Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Note on the bi-risk discrete time risk m ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Note on the bi-risk discrete time risk model with income rate two
Andrius Grigutis   Artur Nakliuda  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA209
Pub. online: 20 June 2022      Type: Research Article      Open accessOpen Access

Received
1 March 2022
Revised
13 May 2022
Accepted
30 May 2022
Published
20 June 2022

Abstract

This article provides survival probability calculation formulas for bi-risk discrete time risk model with income rate two. More precisely, the possibility for the stochastic process $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}-{\textstyle\sum _{j=1}^{\lfloor t/2\rfloor }}{Y_{j}}$, $u\in \mathbb{N}\cup \{0\}$, to stay positive for all $t\in \{1,\hspace{0.1667em}2,\hspace{0.1667em}\dots ,\hspace{0.1667em}T\}$, when $T\in \mathbb{N}$ or $T\to \infty $, is considered, where the subtracted random part consists of the sum of random variables, which occur in time in the following order: ${X_{1}},\hspace{0.1667em}{X_{2}}+{Y_{1}},\hspace{0.1667em}{X_{3}},\hspace{0.1667em}{X_{4}}+{Y_{2}},\hspace{0.1667em}\dots $ Here ${X_{i}},\hspace{0.1667em}i\in \mathbb{N}$, and ${Y_{j}},\hspace{0.1667em}j\in \mathbb{N}$, are independent copies of two independent, but not necessarily identically distributed, nonnegative and integer-valued random variables X and Y. Following the known survival probability formulas of the similar bi-seasonal model with income rate two, $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}{\mathbb{1}_{\{i\hspace{2.5pt}\text{is odd}\}}}-{\textstyle\sum _{j=1}^{t}}{Y_{i}}{\mathbb{1}_{\{j\hspace{2.5pt}\text{is even}\}}}$, it is demonstrated how the bi-seasonal model is used to express survival probability calculation formulas in the bi-risk case. Several numerical examples are given where the derived theoretical statements are applied.

References

[1] 
Alencenovič, A., Grigutis, A.: Bi-seasonal discrete time risk model with income rate two. Commun. Stat., Theory Methods (2022). https://doi.org/10.1080/03610926.2022.2026962
[2] 
Andersen, E.S.: On the collective theory of risk in case of contagion between the claims. Trans. XVth Int. Actuar. 2, 219–229 (1957)
[3] 
Blaževičius, K., Bieliauskienė, E., Šiaulys, J.: Finite-time ruin probability in the inhomogenous claim case. Lith. Math. J. 50(3), 260–270 (2010). MR2719562. https://doi.org/10.1007/s10986-010-9084-2.
[4] 
Bloznelis, M.: Local probabilities of randomly stopped sums of power-law lattice random variables. Lith. Math. J. 59, 437–468 (2019). MR4038060. https://doi.org/10.1007/s10986-019-09462-9.
[5] 
Cang, Y., Yang, Y., Shi, X.: A note on the uniform asymptotic behavior of the finite-time ruin probability in a nonstandard renewal risk model. Lith. Math. J. 60, 161–172 (2020). MR4110665. https://doi.org/10.1007/s10986-020-09473-x.
[6] 
Cui, Z., Wang, Y., Wang, K.: Asymptotics for moments of the overshoot and undershoot of a random walk. Adv. Appl. Probab. 41, 469–494 (2009). MR2541186. https://doi.org/10.1239/aap/1246886620.
[7] 
Damarackas, J., Šiaulys, J.: Bi-seasonal discrete time risk model. Appl. Math. Comput. 247, 930–940 (2014). MR3270895. https://doi.org/10.1016/j.amc.2014.09.040.
[8] 
De La Sen, M.: About some controllability properties of linear discrete-time systems in probabilistic metric spaces. Informatica 27, 503–526 (2016). https://doi.org/10.15388/Informatica.2016.97.
[9] 
De Vylder, F.E., Goovaerts, M.J.: Recursive calculation of finite-time ruin probabilities. Insur. Math. Econ. 7, 1–8 (1988). MR0971858. https://doi.org/10.1016/0167-6687(88)90089-3.
[10] 
Dickson, D.C.E.: Insurance Risk and Ruin. Cambridge University Press, (2006). MR2160707. https://doi.org/10.1017/CBO9780511624155.
[11] 
Gerber, H.U.: Mathematical fun with ruin theory. Insur. Math. Econ. 7(1), 15–23 (1988). MR0971860. https://doi.org/10.1016/0167-6687(88)90091-1.
[12] 
Grigutis, A., Korvel, A., Šiaulys, J.: Ruin probability in the three-seasonal discrete-time risk model. Mod. Stoch. Theory Appl. 2(4), 421–441 (2015). MR3456147. https://doi.org/10.15559/15-VMSTA45.
[13] 
Kievinaitė, D., Šiaulys, J.: Exponential bounds for the tail probability of the supremum of an inhomogeneous random walk. Mod. Stoch. Theory Appl. 5(2), 129–143 (2018). MR3813088. https://doi.org/10.15559/18-vmsta99.
[14] 
Kovalev, M., Utkin, L., Coolen, F., Konstantinov, A.: Counterfactual Explanation of Machine Learning Survival Models. Informatica 32(4), 817–847 (2021). MR4366508. https://doi.org/10.15388/21-infor468.
[15] 
Picard, Ph., Lefèvre, Cl.: The probability of ruin in finite time with discrete claim size distribution. Scand. Actuar. J., 58–69 (1997). MR1440825. https://doi.org/10.1080/03461238.1997.10413978.
[16] 
Python Software Foundation: Python Language Reference, version 2.7. Available at http://www.python.org
[17] 
Staskevičiūtė, S.: Distributions on the circle group. Nonlinear Analysis: Mo-delling and Control 24(3), 433–446 (2019). MR3947113. https://doi.org/10.15388/na.2019.3.7.
[18] 
Wolfram Research, Inc.: Mathematica, Version 9, Champaign, Illinois (2012)
[19] 
Santana, D.J., Rincón, L.: Approximations of the ruin probability in a discrete time risk model. Mod. Stoch. Theory Appl. 7(3), 221–243 (2020). MR4159148. https://doi.org/10.15559/20-vmsta158.
[20] 
Shiu, E.S.W.: Calculation of the probability of eventual ruin by Beekman’s convolution series. Insur. Math. Econ. 7(1), 41–47 (1988). MR0971864. https://doi.org/10.1016/0167-6687(88)90095-9.

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Bi-risk model discrete time finite time survival probability ultimate time survival probability recursive calculation 91G05 60G50 60J80

Metrics (since March 2018)
56

Article info
views

9

Full article
views

29

PDF
downloads

13

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS


MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy