Note on the bi-risk discrete time risk model with income rate two
Volume 9, Issue 4 (2022), pp. 401–412
Pub. online: 20 June 2022
Type: Research Article
Open Access
Received
1 March 2022
1 March 2022
Revised
13 May 2022
13 May 2022
Accepted
30 May 2022
30 May 2022
Published
20 June 2022
20 June 2022
Abstract
This article provides survival probability calculation formulas for bi-risk discrete time risk model with income rate two. More precisely, the possibility for the stochastic process $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}-{\textstyle\sum _{j=1}^{\lfloor t/2\rfloor }}{Y_{j}}$, $u\in \mathbb{N}\cup \{0\}$, to stay positive for all $t\in \{1,\hspace{0.1667em}2,\hspace{0.1667em}\dots ,\hspace{0.1667em}T\}$, when $T\in \mathbb{N}$ or $T\to \infty $, is considered, where the subtracted random part consists of the sum of random variables, which occur in time in the following order: ${X_{1}},\hspace{0.1667em}{X_{2}}+{Y_{1}},\hspace{0.1667em}{X_{3}},\hspace{0.1667em}{X_{4}}+{Y_{2}},\hspace{0.1667em}\dots $ Here ${X_{i}},\hspace{0.1667em}i\in \mathbb{N}$, and ${Y_{j}},\hspace{0.1667em}j\in \mathbb{N}$, are independent copies of two independent, but not necessarily identically distributed, nonnegative and integer-valued random variables X and Y. Following the known survival probability formulas of the similar bi-seasonal model with income rate two, $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}{\mathbb{1}_{\{i\hspace{2.5pt}\text{is odd}\}}}-{\textstyle\sum _{j=1}^{t}}{Y_{i}}{\mathbb{1}_{\{j\hspace{2.5pt}\text{is even}\}}}$, it is demonstrated how the bi-seasonal model is used to express survival probability calculation formulas in the bi-risk case. Several numerical examples are given where the derived theoretical statements are applied.
References
Alencenovič, A., Grigutis, A.: Bi-seasonal discrete time risk model with income rate two. Commun. Stat., Theory Methods (2022). https://doi.org/10.1080/03610926.2022.2026962
Blaževičius, K., Bieliauskienė, E., Šiaulys, J.: Finite-time ruin probability in the inhomogenous claim case. Lith. Math. J. 50(3), 260–270 (2010). MR2719562. https://doi.org/10.1007/s10986-010-9084-2.
Bloznelis, M.: Local probabilities of randomly stopped sums of power-law lattice random variables. Lith. Math. J. 59, 437–468 (2019). MR4038060. https://doi.org/10.1007/s10986-019-09462-9.
Cang, Y., Yang, Y., Shi, X.: A note on the uniform asymptotic behavior of the finite-time ruin probability in a nonstandard renewal risk model. Lith. Math. J. 60, 161–172 (2020). MR4110665. https://doi.org/10.1007/s10986-020-09473-x.
Cui, Z., Wang, Y., Wang, K.: Asymptotics for moments of the overshoot and undershoot of a random walk. Adv. Appl. Probab. 41, 469–494 (2009). MR2541186. https://doi.org/10.1239/aap/1246886620.
Damarackas, J., Šiaulys, J.: Bi-seasonal discrete time risk model. Appl. Math. Comput. 247, 930–940 (2014). MR3270895. https://doi.org/10.1016/j.amc.2014.09.040.
De La Sen, M.: About some controllability properties of linear discrete-time systems in probabilistic metric spaces. Informatica 27, 503–526 (2016). https://doi.org/10.15388/Informatica.2016.97.
De Vylder, F.E., Goovaerts, M.J.: Recursive calculation of finite-time ruin probabilities. Insur. Math. Econ. 7, 1–8 (1988). MR0971858. https://doi.org/10.1016/0167-6687(88)90089-3.
Dickson, D.C.E.: Insurance Risk and Ruin. Cambridge University Press, (2006). MR2160707. https://doi.org/10.1017/CBO9780511624155.
Gerber, H.U.: Mathematical fun with ruin theory. Insur. Math. Econ. 7(1), 15–23 (1988). MR0971860. https://doi.org/10.1016/0167-6687(88)90091-1.
Grigutis, A., Korvel, A., Šiaulys, J.: Ruin probability in the three-seasonal discrete-time risk model. Mod. Stoch. Theory Appl. 2(4), 421–441 (2015). MR3456147. https://doi.org/10.15559/15-VMSTA45.
Kievinaitė, D., Šiaulys, J.: Exponential bounds for the tail probability of the supremum of an inhomogeneous random walk. Mod. Stoch. Theory Appl. 5(2), 129–143 (2018). MR3813088. https://doi.org/10.15559/18-vmsta99.
Kovalev, M., Utkin, L., Coolen, F., Konstantinov, A.: Counterfactual Explanation of Machine Learning Survival Models. Informatica 32(4), 817–847 (2021). MR4366508. https://doi.org/10.15388/21-infor468.
Picard, Ph., Lefèvre, Cl.: The probability of ruin in finite time with discrete claim size distribution. Scand. Actuar. J., 58–69 (1997). MR1440825. https://doi.org/10.1080/03461238.1997.10413978.
Python Software Foundation: Python Language Reference, version 2.7. Available at http://www.python.org
Staskevičiūtė, S.: Distributions on the circle group. Nonlinear Analysis: Mo-delling and Control 24(3), 433–446 (2019). MR3947113. https://doi.org/10.15388/na.2019.3.7.
Santana, D.J., Rincón, L.: Approximations of the ruin probability in a discrete time risk model. Mod. Stoch. Theory Appl. 7(3), 221–243 (2020). MR4159148. https://doi.org/10.15559/20-vmsta158.
Shiu, E.S.W.: Calculation of the probability of eventual ruin by Beekman’s convolution series. Insur. Math. Econ. 7(1), 41–47 (1988). MR0971864. https://doi.org/10.1016/0167-6687(88)90095-9.