Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 9, Issue 4 (2022)
  4. Note on the bi-risk discrete time risk m ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Note on the bi-risk discrete time risk model with income rate two
Volume 9, Issue 4 (2022), pp. 401–412
Andrius Grigutis ORCID icon link to view author Andrius Grigutis details   Artur Nakliuda  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA209
Pub. online: 20 June 2022      Type: Research Article      Open accessOpen Access

Received
1 March 2022
Revised
13 May 2022
Accepted
30 May 2022
Published
20 June 2022

Abstract

This article provides survival probability calculation formulas for bi-risk discrete time risk model with income rate two. More precisely, the possibility for the stochastic process $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}-{\textstyle\sum _{j=1}^{\lfloor t/2\rfloor }}{Y_{j}}$, $u\in \mathbb{N}\cup \{0\}$, to stay positive for all $t\in \{1,\hspace{0.1667em}2,\hspace{0.1667em}\dots ,\hspace{0.1667em}T\}$, when $T\in \mathbb{N}$ or $T\to \infty $, is considered, where the subtracted random part consists of the sum of random variables, which occur in time in the following order: ${X_{1}},\hspace{0.1667em}{X_{2}}+{Y_{1}},\hspace{0.1667em}{X_{3}},\hspace{0.1667em}{X_{4}}+{Y_{2}},\hspace{0.1667em}\dots $ Here ${X_{i}},\hspace{0.1667em}i\in \mathbb{N}$, and ${Y_{j}},\hspace{0.1667em}j\in \mathbb{N}$, are independent copies of two independent, but not necessarily identically distributed, nonnegative and integer-valued random variables X and Y. Following the known survival probability formulas of the similar bi-seasonal model with income rate two, $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}{\mathbb{1}_{\{i\hspace{2.5pt}\text{is odd}\}}}-{\textstyle\sum _{j=1}^{t}}{Y_{i}}{\mathbb{1}_{\{j\hspace{2.5pt}\text{is even}\}}}$, it is demonstrated how the bi-seasonal model is used to express survival probability calculation formulas in the bi-risk case. Several numerical examples are given where the derived theoretical statements are applied.

References

[1] 
Alencenovič, A., Grigutis, A.: Bi-seasonal discrete time risk model with income rate two. Commun. Stat., Theory Methods (2022). https://doi.org/10.1080/03610926.2022.2026962
[2] 
Andersen, E.S.: On the collective theory of risk in case of contagion between the claims. Trans. XVth Int. Actuar. 2, 219–229 (1957)
[3] 
Blaževičius, K., Bieliauskienė, E., Šiaulys, J.: Finite-time ruin probability in the inhomogenous claim case. Lith. Math. J. 50(3), 260–270 (2010). MR2719562. https://doi.org/10.1007/s10986-010-9084-2.
[4] 
Bloznelis, M.: Local probabilities of randomly stopped sums of power-law lattice random variables. Lith. Math. J. 59, 437–468 (2019). MR4038060. https://doi.org/10.1007/s10986-019-09462-9.
[5] 
Cang, Y., Yang, Y., Shi, X.: A note on the uniform asymptotic behavior of the finite-time ruin probability in a nonstandard renewal risk model. Lith. Math. J. 60, 161–172 (2020). MR4110665. https://doi.org/10.1007/s10986-020-09473-x.
[6] 
Cui, Z., Wang, Y., Wang, K.: Asymptotics for moments of the overshoot and undershoot of a random walk. Adv. Appl. Probab. 41, 469–494 (2009). MR2541186. https://doi.org/10.1239/aap/1246886620.
[7] 
Damarackas, J., Šiaulys, J.: Bi-seasonal discrete time risk model. Appl. Math. Comput. 247, 930–940 (2014). MR3270895. https://doi.org/10.1016/j.amc.2014.09.040.
[8] 
De La Sen, M.: About some controllability properties of linear discrete-time systems in probabilistic metric spaces. Informatica 27, 503–526 (2016). https://doi.org/10.15388/Informatica.2016.97.
[9] 
De Vylder, F.E., Goovaerts, M.J.: Recursive calculation of finite-time ruin probabilities. Insur. Math. Econ. 7, 1–8 (1988). MR0971858. https://doi.org/10.1016/0167-6687(88)90089-3.
[10] 
Dickson, D.C.E.: Insurance Risk and Ruin. Cambridge University Press, (2006). MR2160707. https://doi.org/10.1017/CBO9780511624155.
[11] 
Gerber, H.U.: Mathematical fun with ruin theory. Insur. Math. Econ. 7(1), 15–23 (1988). MR0971860. https://doi.org/10.1016/0167-6687(88)90091-1.
[12] 
Grigutis, A., Korvel, A., Šiaulys, J.: Ruin probability in the three-seasonal discrete-time risk model. Mod. Stoch. Theory Appl. 2(4), 421–441 (2015). MR3456147. https://doi.org/10.15559/15-VMSTA45.
[13] 
Kievinaitė, D., Šiaulys, J.: Exponential bounds for the tail probability of the supremum of an inhomogeneous random walk. Mod. Stoch. Theory Appl. 5(2), 129–143 (2018). MR3813088. https://doi.org/10.15559/18-vmsta99.
[14] 
Kovalev, M., Utkin, L., Coolen, F., Konstantinov, A.: Counterfactual Explanation of Machine Learning Survival Models. Informatica 32(4), 817–847 (2021). MR4366508. https://doi.org/10.15388/21-infor468.
[15] 
Picard, Ph., Lefèvre, Cl.: The probability of ruin in finite time with discrete claim size distribution. Scand. Actuar. J., 58–69 (1997). MR1440825. https://doi.org/10.1080/03461238.1997.10413978.
[16] 
Python Software Foundation: Python Language Reference, version 2.7. Available at http://www.python.org
[17] 
Staskevičiūtė, S.: Distributions on the circle group. Nonlinear Analysis: Mo-delling and Control 24(3), 433–446 (2019). MR3947113. https://doi.org/10.15388/na.2019.3.7.
[18] 
Wolfram Research, Inc.: Mathematica, Version 9, Champaign, Illinois (2012)
[19] 
Santana, D.J., Rincón, L.: Approximations of the ruin probability in a discrete time risk model. Mod. Stoch. Theory Appl. 7(3), 221–243 (2020). MR4159148. https://doi.org/10.15559/20-vmsta158.
[20] 
Shiu, E.S.W.: Calculation of the probability of eventual ruin by Beekman’s convolution series. Insur. Math. Econ. 7(1), 41–47 (1988). MR0971864. https://doi.org/10.1016/0167-6687(88)90095-9.

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Bi-risk model discrete time finite time survival probability ultimate time survival probability recursive calculation 91G05 60G50 60J80

Metrics
since March 2018
693

Article info
views

328

Full article
views

290

PDF
downloads

104

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy