Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 1 (2023)
  4. A limit theorem for persistence diagrams ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

A limit theorem for persistence diagrams of random filtered complexes built over marked point processes
Volume 10, Issue 1 (2023), pp. 1–18
Tomoyuki Shirai   Kiyotaka Suzaki  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA214
Pub. online: 13 September 2022      Type: Research Article      Open accessOpen Access

Received
4 February 2022
Revised
9 August 2022
Accepted
29 August 2022
Published
13 September 2022

Abstract

Random filtered complexes built over marked point processes on Euclidean spaces are considered. Examples of these filtered complexes include a filtration of $\check{\text{C}}$ech complexes of a family of sets with various sizes, growths, and shapes. The law of large numbers for persistence diagrams is established as the size of the convex window observing a marked point process tends to infinity.

References

[1] 
Baccelli, F., Blaszczyszyn, B.: Stochastic Geometry and Wireless Networks, Volume I – Theory. Found. Trends Netw. 3(3-4), 249–449, (2009). Vol. 1, pp. 150. NoW Publishers. https://doi.org/10.1561/1300000006, https://hal.inria.fr/inria-00403039. Stochastic Geometry and Wireless Networks, Volume II – Applications; see http://hal.inria.fr/inria-00403040.
[2] 
Bell, G., Lawson, A., Martin, J., Rudzinski, J., Smyth, C.: Weighted persistent homology. Involve 12(5), 823–837 (2019). MR3954298. https://doi.org/10.2140/involve.2019.12.823
[3] 
Bobrowski, O., Mukherjee, S.: The topology of probability distributions on manifolds. Probab. Theory Related Fields 161(3–4), 651–686 (2015). MR3334278. https://doi.org/10.1007/s00440-014-0556-x
[4] 
Bobrowski, O., Oliveira, G.: Random Čech complexes on Riemannian manifolds. Random Structures Algorithms 54(3), 373–412 (2019). MR3938773. https://doi.org/10.1002/rsa.20800
[5] 
Buchet, M., Chazal, F., Oudot, S.Y., Sheehy, D.R.: Efficient and robust persistent homology for measures. Comput. Geom. 58, 70–96 (2016). MR3541079. https://doi.org/10.1016/j.comgeo.2016.07.001
[6] 
Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley Series in Probability and Statistics, p. 544. John Wiley & Sons, Ltd., Chichester (2013). MR3236788. https://doi.org/10.1002/9781118658222
[7] 
Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods, 2nd edn. Probability and its Applications (New York), p. 469. Springer, (2003). MR1950431
[8] 
Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, 2nd edn. Probability and its Applications (New York), p. 573. Springer, (2008). MR2371524. https://doi.org/10.1007/978-0-387-49835-5
[9] 
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Discrete and computational geometry and graph drawing, Columbia, SC, 2001, vol. 28, pp. 511–533 (2002). MR1949898. https://doi.org/10.1007/s00454-002-2885-2
[10] 
Fritz, J.: Generalization of McMillan’s theorem to random set functions. Studia Sci. Math. Hungar. 5, 369–394 (1970). MR293956
[11] 
Goel, A., Trinh, K.D., Tsunoda, K.: Strong law of large numbers for Betti numbers in the thermodynamic regime. J. Stat. Phys. 174(4), 865–892 (2019). MR3913900. https://doi.org/10.1007/s10955-018-2201-z
[12] 
Hiraoka, Y., Shirai, T., Trinh, K.D.: Limit theorems for persistence diagrams. Ann. Appl. Probab. 28(5), 2740–2780 (2018). MR3847972. https://doi.org/10.1214/17-AAP1371
[13] 
Meng, Z., Anand, D.V., Lu, Y., Wu, J., Xia, K.: Weighted persistent homology for biomolecular data analysis (2020). https://doi.org/10.1038/s41598-019-55660-3
[14] 
Nguyen, T.V., Baccelli, F.: On the Generating Functionals of a Class of Random Packing Point Processes (2013). arXiv: 1311.4967. https://doi.org/10.48550/ARXIV.1311.4967
[15] 
Nguyen, X.-X., Zessin, H.: Ergodic theorems for spatial processes. Z. Wahrsch. Verw. Gebiete 48(2), 133–158 (1979). MR534841. https://doi.org/10.1007/BF01886869
[16] 
Pugh, C., Shub, M.: Ergodic elements of ergodic actions. Compos. Math. 23, 115–122 (1971). MR283174
[17] 
Spitz, D., Wienhard, A.: The self-similar evolution of stationary point processes via persistent homology (2020). arXiv: 2012.05751. https://doi.org/10.48550/ARXIV.2012.05751
[18] 
Xuan-Xanh, N., Zessin, H.: Punktprozesse mit Wechselwirkung. Z. Wahrsch. Verw. Gebiete 37(2), 91–126 (1976/77). MR423601. https://doi.org/10.1007/BF00536775
[19] 
Yogeshwaran, D., Adler, R.J.: On the topology of random complexes built over stationary point processes. Ann. Appl. Probab. 25(6), 3338–3380 (2015). MR3404638. https://doi.org/10.1214/14-AAP1075
[20] 
Yogeshwaran, D., Subag, E., Adler, R.J.: Random geometric complexes in the thermodynamic regime. Probab. Theory Related Fields 167(1–2), 107–142 (2017). MR3602843. https://doi.org/10.1007/s00440-015-0678-9
[21] 
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005). MR2121296. https://doi.org/10.1007/s00454-004-1146-y

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Marked point process persistence diagram persistent Betti number random topology

MSC2010
60K35 60B10 55N20

Funding
This work was supported by JST CREST Grant Number JPMJCR15D3, Japan. The first named author (T.S.) was supported by JSPS KAKENHI Grant Numbers JP18H01124, JP20K20884, and JSPS Grant-in-Aid for Transformative Research Areas (A) JP22H05105. T.S. was also supported in part by JSPS KAKENHI Grant Numbers, JP20H00119 and JP21H04432.

Metrics
since March 2018
670

Article info
views

398

Full article
views

314

PDF
downloads

111

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy