Random filtered complexes built over marked point processes on Euclidean spaces are considered. Examples of these filtered complexes include a filtration of $\check{\text{C}}$ech complexes of a family of sets with various sizes, growths, and shapes. The law of large numbers for persistence diagrams is established as the size of the convex window observing a marked point process tends to infinity.
The minimax identity for a nondecreasing upper-semicontinuous utility function satisfying mild growth assumption is studied. In contrast to the classical setting, concavity of the utility function is not asumed. By considering the concave envelope of the utility function, equalities and inequalities between the robust utility functionals of an initial utility function and its concavification are obtained. Furthermore, similar equalities and inequalities are proved in the case of implementing an upper bound on the final endowment of the initial model.
We consider a sequence of fractional Ornstein–Uhlenbeck processes, that are defined as solutions of a family of stochastic Volterra equations with a kernel given by the Riesz derivative kernel, and leading coefficients given by a sequence of independent Gamma random variables. We construct a new process by taking the empirical mean of this sequence. In our framework, the processes involved are not Markovian, hence the analysis of their asymptotic behaviour requires some ad hoc construction. In our main result, we prove the almost sure convergence in the space of trajectories of the empirical means to a given Gaussian process, which we characterize completely.
This paper provides a multivariate extension of Bertoin’s pathwise construction of a Lévy process conditioned to stay positive or negative. Thus obtained processes conditioned to stay in half-spaces are closely related to the original process on a compact time interval seen from its directional extremal points. In the case of a correlated Brownian motion the law of the conditioned process is obtained by a linear transformation of a standard Brownian motion and an independent Bessel-3 process. Further motivation is provided by a limit theorem corresponding to zooming in on a Lévy process with a Brownian part at the point of its directional infimum. Applications to zooming in at the point furthest from the origin are envisaged.
Reflected generalized backward stochastic differential equations (BSDEs) with one discontinuous barrier are investigated when the noise is driven by a Brownian motion and an independent Poisson measure. The existence and uniqueness of the solution are derived when the generators are monotone and the barrier is right-continuous with left limits (rcll). The link is established between this solution and a viscosity solution for an obstacle problem of integral-partial differential equations with nonlinear Neumann boundary conditions.