Minimax identity with robust utility functional for a nonconcave utility
Volume 10, Issue 1 (2023), pp. 19–35
Pub. online: 28 October 2022
Type: Research Article
Open Access
Received
11 July 2022
11 July 2022
Revised
25 September 2022
25 September 2022
Accepted
12 October 2022
12 October 2022
Published
28 October 2022
28 October 2022
Abstract
The minimax identity for a nondecreasing upper-semicontinuous utility function satisfying mild growth assumption is studied. In contrast to the classical setting, concavity of the utility function is not asumed. By considering the concave envelope of the utility function, equalities and inequalities between the robust utility functionals of an initial utility function and its concavification are obtained. Furthermore, similar equalities and inequalities are proved in the case of implementing an upper bound on the final endowment of the initial model.
References
Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Pure and Applied Mathematics (New York), p. 518. John Wiley & Sons, Inc., New York (1984). A Wiley-Interscience Publication. MR0749753
Aumann, R.J., Perles, M.: A variational problem arising in economics. J. Math. Anal. Appl. 11, 488–503 (1965). MR0182447. https://doi.org/10.1016/0022-247X(65)90100-9
Backhoff Veraguas, J.D., Fontbona, J.: Robust utility maximization without model compactness. SIAM J. Financ. Math. 7(1), 70–103 (2016) MR3466196. https://doi.org/10.1137/140985718
Bahchedjioglou, S.G. O.: Optimal investments for the standard maximization problem with non-concave utility function in complete market model. Math. Methods Oper. Res. 95(5), 163–181 (2022). MR4397208. https://doi.org/10.1007/s00186-022-00774-0
Bartl, D., Kupper, M., Neufeld, A.: Duality theory for robust utility maximisation. Finance Stoch. 25(3), 469–503 (2021) MR4283309. https://doi.org/10.1007/s00780-021-00455-6
Biagini, S.: Expected Utility Maximization: Duality Methods. John Wiley & Sons, Ltd (2010). https://doi.org/10.1002/9780470061602.eqf04009.
Bordigoni, G., Matoussi, A., Schweizer, M.: A stochastic control approach to a robust utility maximization problem. In: Stochastic Analysis and Applications, pp. 125–151. Springer (2007) MR2397786. https://doi.org/10.1007/978-3-540-70847-6_6
Föllmer, H., Schied, A.: Stochastic Finance. De Gruyter (2016). MR3859905. https://doi.org/10.1515/9783110463453
Gilboa, I.: Expected utility with purely subjective non-additive probabilities. J. Math. Econ. 16(1), 65–88 (1987). MR0885821. https://doi.org/10.1016/0304-4068(87)90022-X
Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. In: Uncertainty in Economic Theory, pp. 141–151. Routledge (2004) MR1000102. https://doi.org/10.1016/0304-4068(89)90018-9
Hernández-Hernández, D., Schied, A.: A control approach to robust utility maximization with logarithmic utility and time-consistent penalties. Stoch. Process. Appl. 117(8), 980–1000 (2007) MR2340875. https://doi.org/10.1016/j.spa.2006.11.005
Kharytonova, O.O.: Duality theory under model uncertainty for non-concave utility functions. Bull. Taras Shevchenko Nat. Univ. Kyiv. Ser. Phys. Math. 4, 50–56 (2019). https://doi.org/10.17721/1812-5409.2019/4.6
Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999). MR1722287. https://doi.org/10.1214/aoap/1029962818
Kramkov, D., Schachermayer, W.: Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13(4), 1504–1516 (2003). MR2023886. https://doi.org/10.1214/aoap/1069786508
Neufeld, A., Šikić, M.: Robust utility maximization in discrete-time markets with friction. SIAM J. Control Optim. 56(3), 1912–1937 (2018) MR3807937. https://doi.org/10.1137/16M1101829
Neufeld, A., Šikić, M.: Nonconcave robust optimization with discrete strategies under knightian uncertainty. Math. Methods Oper. Res. 90(2), 229–253 (2019) MR4031791. https://doi.org/10.1007/s00186-019-00669-7
Quenez, M.-C.: Optimal portfolio in a multiple-priors model. In: Seminar on Stochastic Analysis, Random Fields and Applications IV, pp. 291–321 (2004). Springer MR2096294
Reichlin, C.: Non-concave utility maximization: optimal investment, stability and applications. PhD thesis, ETH Zürich (2012). https://doi.org/10.3929/ethz-a-007615699
Reichlin, C.: Utility maximization with a given pricing measure when the utility is not necessarily concave. Math. Financ. Econ. 7(4), 531–556 (2013) MR3092304. https://doi.org/10.1007/s11579-013-0093-x
Schied, A.: Optimal investments for robust utility functionals in complete market models. Math. Oper. Res. 30(3), 750–764 (2005). MR2161208. https://doi.org/10.1287/moor.1040.0138
Schied, A., Wu, C.-T.: Duality theory for optimal investments under model uncertainty. Stat. Decis. 23(3), 199–217 (2005). MR2236457. https://doi.org/10.1524/stnd.2005.23.3.199
Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica, 571–587 (1989). https://doi.org/10.2307/1911053
Shevchenko, G.M.: Arbitrage in a discrete-time financial risk model with a proportional tax on the portfolio size. Theory Probab. Math. Stat. 81, 177–186 (2010). MR2667318. https://doi.org/10.1090/S0094-9000-2011-00818-6
Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958) MR0097026
Yaari, M.E.: The dual theory of choice under risk. Econometrica, 95–115 (1987). MR0875518. https://doi.org/10.2307/1911158