A modified Φ-Sobolev inequality for canonical Lévy processes and its applications
Volume 10, Issue 2 (2023), pp. 145–173
Pub. online: 23 January 2023
Type: Research Article
Open Access
Received
10 June 2022
10 June 2022
Revised
15 November 2022
15 November 2022
Accepted
11 January 2023
11 January 2023
Published
23 January 2023
23 January 2023
Abstract
A new modified Φ-Sobolev inequality for canonical ${L^{2}}$-Lévy processes, which are hybrid cases of the Brownian motion and pure jump-Lévy processes, is developed. Existing results included only a part of the Brownian motion process and pure jump processes. A generalized version of the Φ-Sobolev inequality for the Poisson and Wiener spaces is derived. Furthermore, the theorem can be applied to obtain concentration inequalities for canonical Lévy processes. In contrast to the measure concentration inequalities for the Brownian motion alone or pure jump Lévy processes alone, the measure concentration inequalities for canonical Lévy processes involve Lambert’s W-function. Examples of inequalities are also presented, such as the supremum of Lévy processes in the case of mixed Brownian motion and Poisson processes.
References
Alòs, E., León, J.A., Pontier, M., Vives, J.: A Hull and White formula for a general stochastic volatility jump-diffusion model with applications to the study of the short-time behavior of the implied volatility. J. Appl. Math. Stoch. Anal., 359142, 17 pages (2008). MR2476729. https://doi.org/10.1155/2008/359142
Arai, T., Suzuki, R.: Local risk-minimization for Lévy markets. Int. J. Financ. Eng. 2(2), 1550015, 28 pages (2015). MR3454647. https://doi.org/10.1142/S2424786315500152
Bachmann, S., Peccati, G.: Concentration bounds for geometric Poisson functionals: logarithmic Sobolev inequalities revisited. Electron. J. Probab. 21, 6–44 (2016). MR3485348. https://doi.org/10.1214/16-EJP4235
Beardon, A.F.: The principal branch of the Lambert W function. Comput. Methods Funct. Theory 21(2), 307–316 (2021). MR4262124. https://doi.org/10.1007/s40315-020-00329-6
Bourguin, S., Peccati, G.: The Malliavin-Stein method on the Poisson space. In: Stochastic Analysis for Poisson Point Processes. Bocconi Springer Ser., vol. 7, pp. 185–228. Bocconi Univ. Press, (2016). MR3585401. https://doi.org/10.1007/978-3-319-05233-5_6
Capitaine, M., Hsu, E.P., Ledoux, M.: Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Commun. Probab. 2, 71–81 (1997). MR1484557. https://doi.org/10.1214/ECP.v2-986
Chafaï, D.: Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities. J. Math. Kyoto Univ. 44(2), 325–363 (2004). MR2081075. https://doi.org/10.1215/kjm/1250283556
Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(4), 329–359 (1996). MR1414285. https://doi.org/10.1007/BF02124750
de Bruijn, N.G.: Asymptotic Methods in Analysis, 3rd edn. p. 200. Dover Publications, Inc., New York (1981). MR0671583
Delong, Ł.: Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. European Actuarial Academy (EAA) Series, p. 288. Springer, (2013). BSDEs with jumps, MR3089193. https://doi.org/10.1007/978-1-4471-5331-3
Delong, Ł., Imkeller, P.: On Malliavin’s differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures. Stoch. Model. Appl. 120(9), 1748–1775 (2010). MR2673973. https://doi.org/10.1016/j.spa.2010.05.001
Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance. Universitext, p. 413. Springer, (2009). MR2460554. https://doi.org/10.1007/978-3-540-78572-9.
Geiss, C., Laukkarinen, E.: Denseness of certain smooth Lévy functionals in ${\mathbb{D}_{1,2}}$. Probab. Math. Stat. 31(1), 1–15 (2011). MR2804974
Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975). MR0420249. https://doi.org/10.2307/2373688
Gusakova, A., Sambale, H., Thäle, C.: Concentration on Poisson spaces via modified Φ-Sobolev inequalities. Stoch. Model. Appl. 140, 216–235 (2021). MR4282691. https://doi.org/10.1016/j.spa.2021.06.009
Hariya, Y.: A unification of hypercontractivities of the Ornstein-Uhlenbeck semigroup and its connection with Φ-entropy inequalities. J. Funct. Anal. 275(10), 2647–2683 (2018). MR3853077. https://doi.org/10.1016/j.jfa.2018.08.009
Itô, K.: Multiple Wiener integral. J. Math. Soc. Jpn. 3, 157–169 (1951). MR0044064. https://doi.org/10.2969/jmsj/00310157
Itô, K.: Spectral type of the shift transformation of differential processes with stationary increments. Trans. Am. Math. Soc. 81, 253–263 (1956). MR0077017. https://doi.org/10.2307/1992916
Nourdin, I., Peccati, G., Yang, X.: Restricted hypercontractivity on the Poisson space. Proc. Am. Math. Soc. 148(8), 3617–3632 (2020). MR4108865. https://doi.org/10.1090/proc/14964
Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Probability and its Applications, p. 382. Springer, New York (2006). MR2200233
Privault, N.: Stochastic analysis of Bernoulli processes. Probab. Surv. 5, 435–483 (2008). MR2476738. https://doi.org/10.1214/08-PS139
Privault, N.: Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales. Lecture Notes in Mathematics, vol. 1982, p. 310. Springer, (2009). MR2531026. https://doi.org/10.1007/978-3-642-02380-4
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68, p. 486. Cambridge University Press, Cambridge (1999). Translated from the 1990 Japanese original, Revised by the author. MR1739520
Solé, J.L., Utzet, F., Vives, J.: Canonical Lévy process and Malliavin calculus. Stoch. Model. Appl. 117(2), 165–187 (2007). MR2290191. https://doi.org/10.1016/j.spa.2006.06.006
Solé, J.L., Utzet, F., Vives, J.: Chaos expansions and Malliavin calculus for Lévy processes. In: Stochastic Analysis and Applications. Abel Symp., vol. 2, pp. 595–612. Springer, (2007). MR2397807. https://doi.org/10.1007/978-3-540-70847-6_27,
Stam, A.J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 2, 101–112 (1959). MR0109101. https://doi.org/10.1016/S0019-9958(59)90348-1
Surgailis, D.: On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Stat. 3(2), 217–239 (1984). MR0764148
Suzuki, R.: A Clark-Ocone type formula under change of measure for canonical Lévy processes. Accessed 14 March 2022. https://www.math.keio.ac.jp/wp-content/uploads/2022/03/14002.pdf
Suzuki, R.: A Clark-Ocone type formula under change of measure for Lévy processes with ${L^{2}}$-Lévy measure. Commun. Stoch. Anal. 7(3), 383–407 (2013). MR3167405. https://doi.org/10.31390/cosa.7.3.03
Wu, B., Zhou, Y., Lim, C.W., Zhong, H.: Analytical approximations to the Lambert W function. Appl. Math. Model. 104, 114–121 (2022). MR4350987. https://doi.org/10.1016/j.apm.2021.11.024
Wu, L.: A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Relat. Fields 118(3), 427–438 (2000). MR1800540. https://doi.org/10.1007/PL00008749