Transport equation driven by a stochastic measure
Volume 10, Issue 2 (2023), pp. 197–209
Pub. online: 6 February 2023
Type: Research Article
Open Access
Received
7 September 2022
7 September 2022
Revised
2 January 2023
2 January 2023
Accepted
27 January 2023
27 January 2023
Published
6 February 2023
6 February 2023
Abstract
The stochastic transport equation is considered where the randomness is given by a symmetric integral with respect to a stochastic measure. For a stochastic measure, only σ-additivity in probability and continuity of paths is assumed. Existence and uniqueness of a weak solution to the equation are proved.
References
Beck, L., Flandoli, F., Gubinelli, M., Maurelli, M.: Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. Electron. J. Probab. 24, 1–72 (2019). doi:https://doi.org/10.1214/19-EJP379. MR4040996
Bodnarchuk, I.: Averaging principle for a stochastic cable equation. Mod. Stoch. Theory Appl. 7(4), 449–467 (2020). doi:https://doi.org/10.15559/20-VMSTA168. MR4195646
Catuogno, P., Olivera, C.: ${L_{p}}$-solutions of the stochastic transport equation. Random Oper. Stoch. Equ. 21(2), 125–134 (2013). doi:https://doi.org/10.1515/rose-2013-0007. MR3068412
DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989). doi:https://doi.org/10.1007/BF01393835. MR1022305
Fang, S., Luo, D.: Flow of homeomorphisms and stochastic transport equations. Stoch. Anal. Appl. 25(5), 1079–1108 (2007). doi:https://doi.org/10.1080/07362990701540568. MR2352953
Fedrizzi, E., Flandoli, F.: Noise prevents singularities in linear transport equations. J. Funct. Anal. 264(6), 1329–1354 (2013). doi:https://doi.org/10.1016/j.jfa.2013.01.003. MR3017266
Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180(1), 1–53 (2010). doi:https://doi.org/10.1007/s00222-009-0224-4. MR2593276
Maejima, M., Tudor, C.: Wiener integrals with respect to the Hermite process and a non-central limit theorem. Stoch. Anal. Appl. 25(5), 1043–1056 (2007). doi:https://doi.org/10.1080/07362990701540519. MR2352951
Manikin, B.: Asymptotic properties of the parabolic equation driven by stochastic measure. Mod. Stoch. Theory Appl. 9(4), 483–498 (2022). doi:https://doi.org/10.15559/22-VMSTA213 MR4510384
Manikin, B.: Averaging principle for the one-dimensional parabolic equation driven by stochastic measure. Mod. Stoch. Theory Appl. 9(2), 123–137 (2022). doi:https://doi.org/10.15559/21-VMSTA195. MR4420680
Memin, T., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Probab. Lett. 51, 197–206 (2001). doi:https://doi.org/10.1016/S0167-7152(00)00157-7. MR1822771
Mohammed, S.-E.A., Nilssen, T.K., Proske, F.N.: Sobolev differentiable stochastic flows for SDEs with singular coefficients: Applications to the transport equation. Ann. Probab. 43(3), 1535–1576 (2015). doi:https://doi.org/10.1214/14-AOP909. MR3342670
Mucha, P.B.: Transport equation: Extension of classical results for $div\hspace{0.1667em}b\in BMO$. J. Differ. Equ. 249(8), 1871–1883 (2010). doi:https://doi.org/10.1016/j.jde.2010.07.015. MR2679007
Neves, W., Olivera, C.: Initial-boundary value problem for stochastic transport equations. Stoch. Partial Differ. Equ., Anal. Computat. 9(3), 674–701 (2021). doi:https://doi.org/10.1007/s40072-020-00180-9. MR4297236
Olivera, C., Tudor, C.: The density of the solution to the stochastic transport equation with fractional noise. J. Math. Anal. Appl. 431(1), 57–72 (2015). doi:https://doi.org/10.1016/j.jmaa.2015.05.030. MR3357574
Proske, F.: The stochastic transport equation driven by Lévy white noise. Commun. Math. Sci. 2(4), 627–641 (2004). doi:https://doi.org/10.4310/CMS.2004.v2.n4.a4. MR2119931
Radchenko, V.: Stratonovich-type integral with respect to a general stochastic measure. Stochastics 88, 1060–1072 (2016). doi:https://doi.org/10.1080/17442508.2016.1197924. MR3529860
Radchenko, V.: Averaging principle for equation driven by a stochastic measure. Stochastics 91(6), 905–915 (2019). doi:https://doi.org/10.1080/17442508.2018.1559320. MR3985803
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). MR1280932
Tudor, C.: Analysis of the Rosenblatt process. ESAIM Probab. Stat. 12, 230–257 (2008). doi:https://doi.org/10.1051/ps:2007037. MR2374640
Tudor, C.: On the Wiener integral with respect to a sub-fractional Brownian motion on an interval. J. Math. Anal. Appl. 351(1), 456–468 (2009). doi:https://doi.org/10.1016/j.jmaa.2008.10.041. MR2472957
Tudor, C.: Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach. Springer (2013). MR3112799
Wei, J., Lv, G., Wang, W.: Stochastic transport equation with bounded and Dini continuous drift. J. Differ. Equ. 323, 359–403 (2022). doi:https://doi.org/10.1016/j.jde.2022.03.038. MR4404542
Wei, J., Duan, J., Gao, H., Lv, G.: Stochastic regularization for transport equations. Stoch. Partial Differ. Equ., Anal. Computat. 9(1), 105–141 (2021). doi:https://doi.org/10.1007/s40072-020-00171-w. MR4218789
Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998). doi:https://doi.org/10.1007/s004400050171. MR1640795
Zhang, X.: Stochastic flows of SDEs with irregular coefficients and stochastic transport equations. Bull. Sci. Math. 134(4), 340–378 (2010). doi:https://doi.org/10.1016/j.bulsci.2009.12.004. MR2651896