Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 3 (2023)
  4. On geometric recurrence for time-inhomog ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On geometric recurrence for time-inhomogeneous autoregression
Volume 10, Issue 3 (2023), pp. 313–341
Vitaliy Golomoziy ORCID icon link to view author Vitaliy Golomoziy details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA228
Pub. online: 3 May 2023      Type: Research Article      Open accessOpen Access

Received
8 October 2022
Revised
18 March 2023
Accepted
18 March 2023
Published
3 May 2023

Abstract

The time-inhomogeneous autoregressive model AR(1) is studied, which is the process of the form ${X_{n+1}}={\alpha _{n}}{X_{n}}+{\varepsilon _{n}}$, where ${\alpha _{n}}$ are constants, and ${\varepsilon _{n}}$ are independent random variables. Conditions on ${\alpha _{n}}$ and distributions of ${\varepsilon _{n}}$ are established that guarantee the geometric recurrence of the process. This result is applied to estimate the stability of n-steps transition probabilities for two autoregressive processes ${X^{(1)}}$ and ${X^{(2)}}$ assuming that both ${\alpha _{n}^{(i)}}$, $i\in \{1,2\}$, and distributions of ${\varepsilon _{n}^{(i)}}$, $i\in \{1,2\}$, are close enough.

References

[1] 
Andrieu, C., Fort, G., Vihola, M.: Quantitative convergence rates for sugeometric Markov chains. Ann. Appl. Probab. 52, 391–404 (2015) MR3372082. https://doi.org/10.1239/jap/1437658605
[2] 
Baxendale, P.: Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15, 700–738 (2005) MR2114987. https://doi.org/10.1214/105051604000000710
[3] 
Douc, R., Moulines, E., Soulier, P.: Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14, 1353–1377 (2004) MR2071426. https://doi.org/10.1214/105051604000000323
[4] 
Douc, R., Moulines, E., Soulier, P.: Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann. Appl. Probab. 14, 1643–1665 (2004) MR2099647. https://doi.org/10.1214/105051604000000620
[5] 
Douc, R., Moulines, E., Priouret, P., P., S.: Markov Chains. Springer, Switzerland (2018). MR3889011. https://doi.org/10.1007/978-3-319-97704-1
[6] 
D’Amico, G., Gismondi, F., Janssen, J., Manca, R., Petroni, F., Volpe di Prignano, E.: The study of basic risk processes by discrete-time non-homogeneous markov processes. Theory Probab. Math. Stat. 96, 27–43 (2018). MR3666870. https://doi.org/10.1090/tpms/1032
[7] 
Fort, G., Roberts, G.O.: Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15, 1565–1589 (2005) MR2134115. https://doi.org/10.1214/105051605000000115
[8] 
Gismondi, F., Janssen, J., Manca, R.: Non-homogeneous time convolutions, renewal processes and age-dependent mean number of notorcar accidents. Ann. Actuar. Sci. 9, 36–57 (2015)
[9] 
Golomoziy, V.: An inequality for the coupling moment in the case of two inhomogeneous markov chains. Theory Probab. Math. Stat. 90, 43–56 (2015). MR3241859. https://doi.org/10.1090/tpms/948
[10] 
Golomoziy, V.: An estimate of the expectation of the excess of a renewal sequence generated by a time-inhomogeneous markov chain if a square-integrable majorizing sequence exists. Theory Probab. Math. Stat. 94, 53–62 (2017). MR3553453. https://doi.org/10.1090/tpms/1008
[11] 
Golomoziy, V.: On estimation of expectation of simultaneous renewal time of time-inhomogeneous markov chains using dominating sequence. Mod. Stoch. Theory Appl. 6(3), 333–343 (2019). MR4028080. https://doi.org/10.15559/19-vmsta138
[12] 
Golomoziy, V.: Exponential moments of simultaneous hitting time for non-atomic markov chains. Glas. Mat. 57(1), 129–147 (2022). MR4450636. https://doi.org/10.3336/gm.57.1.09
[13] 
Golomoziy, V.: Computable bounds of exponential moments of simultaneous hitting time for two time-inhomogeneous atomic markov chains. In: Stochastic Processes, Statistical Methods, and Engineering Mathematics. SPAS 2019. Springer Proceedings in Mathematics and Statistics 408, pp. 97–119. Springer, Cham (2023). MR4450636. https://doi.org/10.1007/978-3-031-17820-7_5
[14] 
Golomoziy, V., Kartashov, M.: The mean coupling time for independent discrete renewal processes. Theory Probab. Math. Stat. 84, 79–86 (2012). MR2857418. https://doi.org/10.1090/S0094-9000-2012-00855-7
[15] 
Golomoziy, V., Kartashov, M.: Maximal coupling procedure and stability of discrete markov chains. i. Theory Probab. Math. Stat. 86, 93–104 (2013). MR3241447. https://doi.org/10.1090/S0094-9000-2014-00905-9
[16] 
Golomoziy, V., Kartashov, M.: Maximal coupling procedure and stability of discrete markov chains. ii. Theory Probab. Math. Stat. 87, 65–78 (2013). MR3241447. https://doi.org/10.1090/S0094-9000-2014-00905-9
[17] 
Golomoziy, V., Kartashov, M.: On the integrability of the coupling moment for time-inhomogeneous markov chains. Theory Probab. Math. Stat. 89, 1–12 (2014). MR3235170. https://doi.org/10.1090/S0094-9000-2015-00930-3
[18] 
Golomoziy, V., Kartashov, M.: Maximal coupling and stability of discrete non-homogeneous markov chains. Theory Probab. Math. Stat. 91, 17–27 (2015). MR2986452. https://doi.org/10.1090/S0094-9000-2013-00891-6
[19] 
Golomoziy, V., Kartashov, M.: Maximal coupling and v -stability of discrete nonhomogeneous markov chains. Theory Probab. Math. Stat. 93, 19–31 (2016). MR3553437. https://doi.org/10.1090/tpms/992
[20] 
Golomoziy, V., Mishura, Y.: Stability estimates for finite-dimensional distributions of time-inhomogeneous markov chains. Mathematics 8(2), 1–13 (2020). https://doi.org/10.3390/math8020174
[21] 
Golomoziy, V., Kartashov, M., Kartashov, Y.: Impact of the stress factor on the price of widow’s pensions. proofs. Theory Probab. Math. Stat. 92, 17–22 (2016). MR3330687. https://doi.org/10.1090/tpms/979
[22] 
Lindvall, T.: Lectures on Coupling Method. John Wiley and Sons (1991) MR1180522
[23] 
Melfi, V.: Nonlinear Markov renewal theory with statistical applications. Ann. Probab. 20, 753–771 (1992) MR1159572
[24] 
Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Springer, Switzerland (1993). MR1287609. https://doi.org/10.1007/978-1-4471-3267-7
[25] 
Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000) MR1741181. https://doi.org/10.1007/978-1-4612-1236-2

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Coupling renewal theory inhomogeneous Markov chain autoregressive model

MSC2010
60J10 60K05

Metrics
since March 2018
504

Article info
views

215

Full article
views

252

PDF
downloads

111

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy