On geometric recurrence for time-inhomogeneous autoregression
Volume 10, Issue 3 (2023), pp. 313–341
Pub. online: 3 May 2023
Type: Research Article
Open Access
Received
8 October 2022
8 October 2022
Revised
18 March 2023
18 March 2023
Accepted
18 March 2023
18 March 2023
Published
3 May 2023
3 May 2023
Abstract
The time-inhomogeneous autoregressive model AR(1) is studied, which is the process of the form ${X_{n+1}}={\alpha _{n}}{X_{n}}+{\varepsilon _{n}}$, where ${\alpha _{n}}$ are constants, and ${\varepsilon _{n}}$ are independent random variables. Conditions on ${\alpha _{n}}$ and distributions of ${\varepsilon _{n}}$ are established that guarantee the geometric recurrence of the process. This result is applied to estimate the stability of n-steps transition probabilities for two autoregressive processes ${X^{(1)}}$ and ${X^{(2)}}$ assuming that both ${\alpha _{n}^{(i)}}$, $i\in \{1,2\}$, and distributions of ${\varepsilon _{n}^{(i)}}$, $i\in \{1,2\}$, are close enough.
References
Andrieu, C., Fort, G., Vihola, M.: Quantitative convergence rates for sugeometric Markov chains. Ann. Appl. Probab. 52, 391–404 (2015) MR3372082. https://doi.org/10.1239/jap/1437658605
Baxendale, P.: Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15, 700–738 (2005) MR2114987. https://doi.org/10.1214/105051604000000710
Douc, R., Moulines, E., Soulier, P.: Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14, 1353–1377 (2004) MR2071426. https://doi.org/10.1214/105051604000000323
Douc, R., Moulines, E., Soulier, P.: Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann. Appl. Probab. 14, 1643–1665 (2004) MR2099647. https://doi.org/10.1214/105051604000000620
Douc, R., Moulines, E., Priouret, P., P., S.: Markov Chains. Springer, Switzerland (2018). MR3889011. https://doi.org/10.1007/978-3-319-97704-1
D’Amico, G., Gismondi, F., Janssen, J., Manca, R., Petroni, F., Volpe di Prignano, E.: The study of basic risk processes by discrete-time non-homogeneous markov processes. Theory Probab. Math. Stat. 96, 27–43 (2018). MR3666870. https://doi.org/10.1090/tpms/1032
Fort, G., Roberts, G.O.: Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15, 1565–1589 (2005) MR2134115. https://doi.org/10.1214/105051605000000115
Golomoziy, V.: An inequality for the coupling moment in the case of two inhomogeneous markov chains. Theory Probab. Math. Stat. 90, 43–56 (2015). MR3241859. https://doi.org/10.1090/tpms/948
Golomoziy, V.: An estimate of the expectation of the excess of a renewal sequence generated by a time-inhomogeneous markov chain if a square-integrable majorizing sequence exists. Theory Probab. Math. Stat. 94, 53–62 (2017). MR3553453. https://doi.org/10.1090/tpms/1008
Golomoziy, V.: On estimation of expectation of simultaneous renewal time of time-inhomogeneous markov chains using dominating sequence. Mod. Stoch. Theory Appl. 6(3), 333–343 (2019). MR4028080. https://doi.org/10.15559/19-vmsta138
Golomoziy, V.: Exponential moments of simultaneous hitting time for non-atomic markov chains. Glas. Mat. 57(1), 129–147 (2022). MR4450636. https://doi.org/10.3336/gm.57.1.09
Golomoziy, V.: Computable bounds of exponential moments of simultaneous hitting time for two time-inhomogeneous atomic markov chains. In: Stochastic Processes, Statistical Methods, and Engineering Mathematics. SPAS 2019. Springer Proceedings in Mathematics and Statistics 408, pp. 97–119. Springer, Cham (2023). MR4450636. https://doi.org/10.1007/978-3-031-17820-7_5
Golomoziy, V., Kartashov, M.: The mean coupling time for independent discrete renewal processes. Theory Probab. Math. Stat. 84, 79–86 (2012). MR2857418. https://doi.org/10.1090/S0094-9000-2012-00855-7
Golomoziy, V., Kartashov, M.: Maximal coupling procedure and stability of discrete markov chains. i. Theory Probab. Math. Stat. 86, 93–104 (2013). MR3241447. https://doi.org/10.1090/S0094-9000-2014-00905-9
Golomoziy, V., Kartashov, M.: Maximal coupling procedure and stability of discrete markov chains. ii. Theory Probab. Math. Stat. 87, 65–78 (2013). MR3241447. https://doi.org/10.1090/S0094-9000-2014-00905-9
Golomoziy, V., Kartashov, M.: On the integrability of the coupling moment for time-inhomogeneous markov chains. Theory Probab. Math. Stat. 89, 1–12 (2014). MR3235170. https://doi.org/10.1090/S0094-9000-2015-00930-3
Golomoziy, V., Kartashov, M.: Maximal coupling and stability of discrete non-homogeneous markov chains. Theory Probab. Math. Stat. 91, 17–27 (2015). MR2986452. https://doi.org/10.1090/S0094-9000-2013-00891-6
Golomoziy, V., Kartashov, M.: Maximal coupling and v -stability of discrete nonhomogeneous markov chains. Theory Probab. Math. Stat. 93, 19–31 (2016). MR3553437. https://doi.org/10.1090/tpms/992
Golomoziy, V., Mishura, Y.: Stability estimates for finite-dimensional distributions of time-inhomogeneous markov chains. Mathematics 8(2), 1–13 (2020). https://doi.org/10.3390/math8020174
Golomoziy, V., Kartashov, M., Kartashov, Y.: Impact of the stress factor on the price of widow’s pensions. proofs. Theory Probab. Math. Stat. 92, 17–22 (2016). MR3330687. https://doi.org/10.1090/tpms/979
Lindvall, T.: Lectures on Coupling Method. John Wiley and Sons (1991) MR1180522
Melfi, V.: Nonlinear Markov renewal theory with statistical applications. Ann. Probab. 20, 753–771 (1992) MR1159572
Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Springer, Switzerland (1993). MR1287609. https://doi.org/10.1007/978-1-4471-3267-7
Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000) MR1741181. https://doi.org/10.1007/978-1-4612-1236-2