Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 4 (2023)
  4. Perpetual cancellable American options w ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Perpetual cancellable American options with convertible features
Volume 10, Issue 4 (2023), pp. 367–395
Tsvetelin Zaevski ORCID icon link to view author Tsvetelin Zaevski details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA230
Pub. online: 4 August 2023      Type: Research Article      Open accessOpen Access

Received
24 December 2022
Revised
5 July 2023
Accepted
20 July 2023
Published
4 August 2023

Abstract

The major characteristic of the cancellable American options is the existing writer’s right to cancel the contract prematurely paying some penalty amount. The main purpose of this paper is to introduce and examine a new subclass of such options for which the penalty which the writer owes for this right consists of three parts – a fixed amount, shares of the underlying asset, and a proportion of the usual option payment. We examine the asymptotic case in which the maturity is set to be infinity. We determine the optimal exercise regions for the option’s holder and writer and derive the fair option price.

References

[1] 
Adoukonou, O., André, F., Viviani, J.-L.: Callable convertible bonds in sequential financing: Evidence on the Western European market. Journal of Multinational Financial Management 45, 35–51 (2018). ISSN 1042-444X. https://doi.org/10.1016/j.mulfin.2018.04.001
[2] 
Adoukonou, O., André, F., Viviani, J.-L.: The determinants of the convertible bonds call policy of Western European companies. International Review of Financial Analysis 73, 101582 (2021). ISSN 1057-5219. https://doi.org/10.1016/j.irfa.2020.101582
[3] 
Aksamit, A., Deng, S., Obłój, J., Tan, X.: The robust pricing–hedging duality for American options in discrete time financial markets. Mathematical Finance 29(3), 861–897 (2019). MR3974286. https://doi.org/10.1111/mafi.12199
[4] 
Alghalith, M.: Pricing the American options using the Black–Scholes pricing formula. Physica A: Statistical Mechanics and its Applications 507, 443–445 (2018). ISSN 0378-4371. MR3812306. https://doi.org/10.1016/j.physa.2018.05.087
[5] 
Alghalith, M.: Pricing the American options: A closed-form, simple formula. Physica A: Statistical Mechanics and its Applications 548, 123873 (2020). ISSN 0378-4371. MR4091335. https://doi.org/10.1016/j.physa.2019.123873
[6] 
Armerin, F.: American perpetual options with random start. Results in Applied Mathematics 3, 100017 (2019). ISSN 2590-0374. MR4351528. https://doi.org/10.1016/j.rinam.2019.100017
[7] 
Armerin, F.: Optimal stopping of a killed exponentially growing process. Applied Mathematics and Computation 353, 208–214 (2019). ISSN 0096-3003. MR3915351. https://doi.org/10.1016/j.amc.2019.02.006
[8] 
Batten, J.A., Khaw, K.L.-H., Young, M.R.: Pricing convertible bonds. Journal of Banking & Finance 92, 216–236 (2018). ISSN 0378-4266. https://doi.org/10.1016/j.jbankfin.2018.05.006
[9] 
Borodin, A.N., Salminen, P.: Handbook of Brownian Motion – Facts and Formulae. Probability and Its Applications. Birkhäuser, Basel (2015). URL https://books.google.bg/books?id=8cZrllyXfOUC. ISBN 9783764367053. MR1912205. https://doi.org/10.1007/978-3-0348-8163-0
[10] 
Burnecki, K., Giuricich, M.N., Palmowski, Zb.: Valuation of contingent convertible catastrophe bonds – the case for equity conversion. Insurance: Mathematics and Economics 88, 238–254 (2019). ISSN 0167-6687. MR3991949. https://doi.org/10.1016/j.insmatheco.2019.07.006
[11] 
Cen, Z., Chen, W.: A HODIE finite difference scheme for pricing American options. Advances in Difference Equations 2019(1), 1 (2019). MR3915478. https://doi.org/10.1186/s13662-018-1939-6
[12] 
Chan, T.L.R.: Hedging and pricing early-exercise options with complex Fourier series expansion. The North American Journal of Economics and Finance 54, 100973 (2019). ISSN 1062-9408. https://doi.org/10.1016/j.najef.2019.04.016
[13] 
Chan, T.L.R.: An SFP–FCC method for pricing and hedging early-exercise options under Lévy processes. Quantitative Finance 20(8), 1325–1343 (2020). MR4138222. https://doi.org/10.1080/14697688.2020.1736322
[14] 
Chen, W., Wang, S.: A power penalty method for a 2d fractional partial differential linear complementarity problem governing two-asset American option pricing. Applied Mathematics and Computation 305, 174–187 (2017). ISSN 0096-3003. MR3621700. https://doi.org/10.1016/j.amc.2017.01.069
[15] 
Chen, Y., Wan, J.W.L.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions. Quantitative Finance 21(1), 45–67 (2021). MR4188880. https://doi.org/10.1080/14697688.2020.1788219
[16] 
Chen, Z., Xu, Y., Wang, Y.: Can convertible bond trading predict stock returns? Evidence from China. Pacific-Basin Finance Journal 79, 102026 (2023). https://doi.org/10.1016/j.pacfin.2023.102026
[17] 
Dautov, R.Z., Lapin, A.V., Zhang, S.: Error estimates for Lagrange–Galerkin approximation of American options valuation. SIAM Journal on Numerical Analysis 58(1), 48–65 (2020). MR4048013. https://doi.org/10.1137/19M1265958
[18] 
Del Viva, L., El Hefnawy, M.: Financing decisions: The case of convertible bonds. International Review of Financial Analysis 67, 101393 (2020). ISSN 1057-5219. https://doi.org/10.1016/j.irfa.2019.101393
[19] 
Deng, G.: American continuous-installment options of barrier type. Journal of Systems Science and Complexity 27(5), 928–949 (2014). MR3264839. https://doi.org/10.1007/s11424-013-0310-y
[20] 
Deng, G.: Pricing American continuous-installment options under stochastic volatility model. Journal of Mathematical Analysis and Applications 424(1), 802–823 (2015). ISSN 0022-247X. MR3286595. https://doi.org/10.1016/j.jmaa.2014.11.049
[21] 
Deng, G.: Pricing perpetual American floating strike lookback option under multiscale stochastic volatility model. Chaos, Solitons & Fractals 141, 110411 (2020). MR4171635. https://doi.org/10.1016/j.chaos.2020.110411
[22] 
Dolinsky, Y.: On shortfall risk minimization for game options. Modern Stochastics: Theory and Applications 7(4), 379–394 (2020). ISSN 2351-6046. MR4195642. https://doi.org/10.15559/20-VMSTA164
[23] 
Dolinsky, Y., Kifer, Y.: Risk minimization for game options in markets imposing minimal transaction costs. Advances in Applied Probability 48(3), 926–946 (2016). MR3568898. https://doi.org/10.1017/apr.2016.34
[24] 
Dumitrescu, R., Quenez, M.-C., Sulem, A.: Game options in an imperfect market with default. SIAM Journal on Financial Mathematics 8(1), 532–559 (2017). MR3679314. https://doi.org/10.1137/16M1109102
[25] 
Dumitrescu, R., Quenez, M.-C., Sulem, A.: American options in an imperfect complete market with default. In: ESAIM: Proceedings and Surveys, pp. 93–110 (2018). MR3883982. https://doi.org/10.1051/proc/201864093
[26] 
Ekström, E., Peskir, G.: Optimal stopping games for Markov processes. SIAM Journal on Control and Optimization 47(2), 684–702 (2008). MR2385859. https://doi.org/10.1137/060673916
[27] 
Emmerling, T.J.: Perpetual cancellable American call option. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 22(4), 645–666 (2012). MR2968279. https://doi.org/10.1111/j.1467-9965.2011.00479.x
[28] 
Gan, X., Yang, Y., Zhang, K.: A robust numerical method for pricing American options under Kou’s jump-diffusion models based on penalty method. Journal of Applied Mathematics and Computing 62(1), 1–21 (2020). MR4056888. https://doi.org/10.1007/s12190-019-01270-1
[29] 
Gapeev, P.V., Li, L., Wu, Z.: Perpetual American cancellable standard options in models with last passage times. Algorithms 14(1), 3 (2021). ISSN 1999-4893. MR4213424. https://doi.org/10.3390/a14010003
[30] 
Guo, P.: Pricing of the quanto game option with Asian feature. Journal of Finance and Accounting 8(3), 143 (2020). https://doi.org/10.11648/j.jfa.20200803.15
[31] 
Guo, P., Chen, Q., Guo, X., Fang, Y.: Path-dependent game options: a lookback case. Review of Derivatives Research 17(1), 113–124 (2014). https://doi.org/10.1007/s11147-013-9092-6
[32] 
Guo, P., Zhang, J., Wang, Q.: Path-dependent game options with Asian features. Chaos, Solitons & Fractals 141, 110412 (2020). MR4171636. https://doi.org/10.1016/j.chaos.2020.110412
[33] 
Jeon, J., Kim, G.: An integral equation representation for american better-of option on two underlying assets. Advances in Continuous and Discrete Models 2022(1), 39 (2022). MR4423694. https://doi.org/10.1186/s13662-022-03713-9
[34] 
Jeon, J., Kim, G.: Analytic valuation formula for American strangle option in the mean-reversion environment. Mathematics 10(15), 2688 (2022). ISSN 2227-7390. https://doi.org/10.3390/math10152688
[35] 
Jeon, J., Oh, J.: Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems-B 24(2), 755 (2019). MR3927453. https://doi.org/10.3934/dcdsb.2018206
[36] 
Jin, L., Yuan, X., Peiran, L., Xu, H., Lian, F.: Option features and price discovery in convertible bonds. Journal of Futures Markets 43(3), 384–403 (2023). https://doi.org/10.1002/fut.22391
[37] 
Kang, M., Jeon, J., Han, H., Lee, S.: Analytic solution for American strangle options using Laplace–Carson transforms. Communications in Nonlinear Science and Numerical Simulation 47, 292–307 (2017). MR3600275. https://doi.org/10.1016/j.cnsns.2016.11.024
[38] 
Kifer, Y.: Game options. Finance and Stochastics 4(4), 443–463 (Aug 2000). ISSN 0949-2984. MR1779588. https://doi.org/10.1007/PL00013527
[39] 
Kifer, Y.: Dynkin’s games and Israeli options. ISRN Probability and Statistics 2013, 856458 (2013)
[40] 
Kühn, C., Kyprianou, A.E.: Callable puts as composite exotic options. Mathematical Finance 17(4), 487–502 (2007). MR2352903. https://doi.org/10.1111/j.1467-9965.2007.00313.x
[41] 
Kunita, H., Seko, S.: Game call options and their exercise regions. Nanzan Academic Society (2004). Technical report.
[42] 
Kyprianou, A.E.: Some calculations for Israeli options. Finance and Stochastics 8(1), 73–86 (2004). MR2022979. https://doi.org/10.1007/s00780-003-0104-5
[43] 
Lin, S., He, X.-J.: A new integral equation approach for pricing American-style barrier options with rebates. Journal of Computational and Applied Mathematics 383, 113107 (2021). ISSN 0377-0427. MR4134877. https://doi.org/10.1016/j.cam.2020.113107
[44] 
Lin, S., Zhu, S.-P.: Numerically pricing convertible bonds under stochastic volatility or stochastic interest rate with an ADI-based predictor–corrector scheme. Computers & Mathematics with Applications 79(5), 1393–1419 (2020). ISSN 0898-1221. MR4065791. https://doi.org/10.1016/j.camwa.2019.09.003
[45] 
Lin, S., Zhu, S.P.: Pricing resettable convertible bonds using an integral equation approach. IMA Journal of Management Mathematics 31(4), 417–443 (12 2019). MR4153131. https://doi.org/10.1093/imaman/dpz015
[46] 
Lu, X., Putri, E.R.M.: A semi-analytic valuation of American options under a two-state regime-switching economy. Physica A: Statistical Mechanics and its Applications 538, 122968 (2020). ISSN 0378-4371. MR4018608. https://doi.org/10.1016/j.physa.2019.122968
[47] 
Lv, S., Wu, Z., Zhang, Q.: The Dynkin game with regime switching and applications to pricing game options. Annals of Operations Research 313, 1159–1182 (2022). MR4440783. https://doi.org/10.1007/s10479-020-03656-y
[48] 
Ma, C., Xu, W., Yuan, G.: Valuation model for Chinese convertible bonds with soft call/put provision under the hybrid willow tree. Quantitative Finance 20(12), 2037–2053 (2020). MR4172759. https://doi.org/10.1080/14697688.2020.1814022
[49] 
Ma, J., Yang, W., Cui, Z.: CTMC integral equation method for American options under stochastic local volatility models. Journal of Economic Dynamics and Control 128, 104145 (2021). ISSN 0165-1889. MR4270100. https://doi.org/10.1016/j.jedc.2021.104145
[50] 
Mehrdoust, F., Najafi, A.R., Fallah, S., Samimi, O.: Mixed fractional Heston model and the pricing of American options. Journal of Computational and Applied Mathematics 330, 141–154 (2018). MR3717584. https://doi.org/10.1016/j.cam.2017.08.002
[51] 
Mehrdoust, F., Noorani, I., Hamdi, A.: Calibration of the double Heston model and an analytical formula in pricing American put option. Journal of Computational and Applied Mathematics 392, 113422 (2021). ISSN 0377-0427. MR4217895. https://doi.org/10.1016/j.cam.2021.113422
[52] 
Milanov, K., Kounchev, O., Fabozzi, F.J., Kim, Y.S., Rachev, S.T.: A binomial-tree model for convertible bond pricing. The Journal of Fixed Income 22(3), 79–94 (2012). https://doi.org/10.3905/jfi.2012.22.3.079
[53] 
Milanov, K., Kounchev, O., Fabozzi, F.: A complete model for pricing coco bonds. The Journal of Fixed Income 29(3), 53–67 (2019). https://doi.org/10.3905/jfi.2019.1.077
[54] 
Mollapourasl, R., Fereshtian, A., Vanmaele, M.: Radial basis functions with partition of unity method for American options with stochastic volatility. Computational Economics 53(1), 259–287 (2019). https://doi.org/10.1007/s10614-017-9739-8
[55] 
Peskir, G.: Optimal stopping games and Nash equilibrium. Theory of Probability & Its Applications 53(3), 558–571 (2009). MR2759714. https://doi.org/10.1137/S0040585X97983821
[56] 
Ross, S.M.: Introduction to Probability Models. Academic Press (2014). MR0328973
[57] 
Roux, A.: Pricing and hedging game options in currency models with proportional transaction costs. International Journal of Theoretical and Applied Finance 19(07), 1650043 (2016). MR3569828. https://doi.org/10.1142/S0219024916500436
[58] 
Roux, A., Zastawniak, T.: Game options with gradual exercise and cancellation under proportional transaction costs. Stochastics 90(8), 1190–1220 (2018). MR3868262. https://doi.org/10.1080/17442508.2018.1499102
[59] 
Safaei, M., Neisy, A., Nematollahi, N.: New splitting scheme for pricing American options under the Heston model. Computational Economics 52(2), 405–420 (2018). https://doi.org/10.1007/s10614-017-9686-4
[60] 
Shiryaev, A.N., Kabanov, Y.M., Kramkov, D.O., Mel’nikov, A.V.: Toward the theory of pricing of options of both European and American types. II. continuous time. Theory of Probability & Its Applications 39(1), 61–102 (1995). MR1348191. https://doi.org/10.1137/1139003
[61] 
Suzuki, A., Sawaki, K.: The pricing of perpetual game put options and optimal boundaries. In: Recent Advances in Stochastic Operations Research, pp. 175–187. World Scientific (2007). MR2313198. https://doi.org/10.1142/9789812706683_0012
[62] 
Verwijmeren, P., Yang, A.: The fluctuating maturities of convertible bonds. Journal of Corporate Finance 62, 101576 (2020). ISSN 0929-1199. https://doi.org/10.1016/j.jcorpfin.2020.101576
[63] 
Yam, S.C.P., Yung, S.P., Zhou, W.: Game call options revisited. Mathematical Finance 24(1), 173–206 (2014). MR3157693. https://doi.org/10.1111/mafi.12000
[64] 
Zaevski, T.: American strangle options with arbitrary strikes. Journal of Futures Markets 43(7), 880–903 (2023). https://doi.org/10.1002/fut.22419
[65] 
Zaevski, T.S.: Perpetual game options with a multiplied penalty. Communications in Nonlinear Science and Numerical Simulation 85, 105248 (2020). ISSN 1007-5704. MR4074142. https://doi.org/10.1016/j.cnsns.2020.105248
[66] 
Zaevski, T.S.: Discounted perpetual game call options. Chaos, Solitons & Fractals 131, 109503 (2020). ISSN 0960-0779. MR4065328. https://doi.org/10.1016/j.chaos.2019.109503
[67] 
Zaevski, T.S.: Discounted perpetual game put options. Chaos, Solitons & Fractals 137, 109858 (2020). ISSN 0960-0779. MR4099368. https://doi.org/10.1016/j.chaos.2020.109858
[68] 
Zaevski, T.S.: A new approach for pricing discounted American options. Communications in Nonlinear Science and Numerical Simulation 97, 105752 (2021). ISSN 1007-5704. MR4212896. https://doi.org/10.1016/j.cnsns.2021.105752
[69] 
Zaevski, T.S.: Pricing cancellable american put options on the finite time horizon. Journal of Futures Markets 42(7), 1284–1303 (2022). https://doi.org/10.1002/fut.22331
[70] 
Zeitsch, P.J., Davis, T.P.: The price determinants of contingent convertible bonds. Finance Research Letters 43, 102015 (2021). ISSN 1544-6123. https://doi.org/10.1016/j.frl.2021.102015
[71] 
Zhang, P.G.: Exotic Options. World Scientific (1997). https://doi.org/10.1142/2713
[72] 
Zhang, Z., Wang, Z., Chen, X.: Pricing convertible bond in uncertain financial market. Journal of Uncertain Systems 14(01), 2150007 (2021). https://doi.org/10.1142/S1752890921500070
[73] 
Zhu, S.-P., Lin, S., Lu, X.: Pricing puttable convertible bonds with integral equation approaches. Computers & Mathematics with Applications 75(8), 2757–2781 (2018). ISSN 0898-1221. MR3787485. https://doi.org/10.1016/j.camwa.2018.01.007
[74] 
Zhu, S.-P., He, X.-J., Ping Lu, X.: A new integral equation formulation for American put options. Quantitative Finance 18(3), 483–490 (2018). MR3763154. https://doi.org/10.1080/14697688.2017.1348617

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
American options game options optimal strategies convertible features pricing 91A05 91A15 91B70 91G20

Funding
This study is financed by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project No BG-RRP-2.004-0008.

Metrics
since March 2018
682

Article info
views

255

Full article
views

295

PDF
downloads

89

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy