Perpetual cancellable American options with convertible features
Volume 10, Issue 4 (2023), pp. 367–395
Pub. online: 4 August 2023
Type: Research Article
Open Access
Received
24 December 2022
24 December 2022
Revised
5 July 2023
5 July 2023
Accepted
20 July 2023
20 July 2023
Published
4 August 2023
4 August 2023
Abstract
The major characteristic of the cancellable American options is the existing writer’s right to cancel the contract prematurely paying some penalty amount. The main purpose of this paper is to introduce and examine a new subclass of such options for which the penalty which the writer owes for this right consists of three parts – a fixed amount, shares of the underlying asset, and a proportion of the usual option payment. We examine the asymptotic case in which the maturity is set to be infinity. We determine the optimal exercise regions for the option’s holder and writer and derive the fair option price.
References
Adoukonou, O., André, F., Viviani, J.-L.: Callable convertible bonds in sequential financing: Evidence on the Western European market. Journal of Multinational Financial Management 45, 35–51 (2018). ISSN 1042-444X. https://doi.org/10.1016/j.mulfin.2018.04.001
Adoukonou, O., André, F., Viviani, J.-L.: The determinants of the convertible bonds call policy of Western European companies. International Review of Financial Analysis 73, 101582 (2021). ISSN 1057-5219. https://doi.org/10.1016/j.irfa.2020.101582
Aksamit, A., Deng, S., Obłój, J., Tan, X.: The robust pricing–hedging duality for American options in discrete time financial markets. Mathematical Finance 29(3), 861–897 (2019). MR3974286. https://doi.org/10.1111/mafi.12199
Alghalith, M.: Pricing the American options using the Black–Scholes pricing formula. Physica A: Statistical Mechanics and its Applications 507, 443–445 (2018). ISSN 0378-4371. MR3812306. https://doi.org/10.1016/j.physa.2018.05.087
Alghalith, M.: Pricing the American options: A closed-form, simple formula. Physica A: Statistical Mechanics and its Applications 548, 123873 (2020). ISSN 0378-4371. MR4091335. https://doi.org/10.1016/j.physa.2019.123873
Armerin, F.: American perpetual options with random start. Results in Applied Mathematics 3, 100017 (2019). ISSN 2590-0374. MR4351528. https://doi.org/10.1016/j.rinam.2019.100017
Armerin, F.: Optimal stopping of a killed exponentially growing process. Applied Mathematics and Computation 353, 208–214 (2019). ISSN 0096-3003. MR3915351. https://doi.org/10.1016/j.amc.2019.02.006
Batten, J.A., Khaw, K.L.-H., Young, M.R.: Pricing convertible bonds. Journal of Banking & Finance 92, 216–236 (2018). ISSN 0378-4266. https://doi.org/10.1016/j.jbankfin.2018.05.006
Borodin, A.N., Salminen, P.: Handbook of Brownian Motion – Facts and Formulae. Probability and Its Applications. Birkhäuser, Basel (2015). URL https://books.google.bg/books?id=8cZrllyXfOUC. ISBN 9783764367053. MR1912205. https://doi.org/10.1007/978-3-0348-8163-0
Burnecki, K., Giuricich, M.N., Palmowski, Zb.: Valuation of contingent convertible catastrophe bonds – the case for equity conversion. Insurance: Mathematics and Economics 88, 238–254 (2019). ISSN 0167-6687. MR3991949. https://doi.org/10.1016/j.insmatheco.2019.07.006
Cen, Z., Chen, W.: A HODIE finite difference scheme for pricing American options. Advances in Difference Equations 2019(1), 1 (2019). MR3915478. https://doi.org/10.1186/s13662-018-1939-6
Chan, T.L.R.: Hedging and pricing early-exercise options with complex Fourier series expansion. The North American Journal of Economics and Finance 54, 100973 (2019). ISSN 1062-9408. https://doi.org/10.1016/j.najef.2019.04.016
Chan, T.L.R.: An SFP–FCC method for pricing and hedging early-exercise options under Lévy processes. Quantitative Finance 20(8), 1325–1343 (2020). MR4138222. https://doi.org/10.1080/14697688.2020.1736322
Chen, W., Wang, S.: A power penalty method for a 2d fractional partial differential linear complementarity problem governing two-asset American option pricing. Applied Mathematics and Computation 305, 174–187 (2017). ISSN 0096-3003. MR3621700. https://doi.org/10.1016/j.amc.2017.01.069
Chen, Y., Wan, J.W.L.: Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions. Quantitative Finance 21(1), 45–67 (2021). MR4188880. https://doi.org/10.1080/14697688.2020.1788219
Chen, Z., Xu, Y., Wang, Y.: Can convertible bond trading predict stock returns? Evidence from China. Pacific-Basin Finance Journal 79, 102026 (2023). https://doi.org/10.1016/j.pacfin.2023.102026
Dautov, R.Z., Lapin, A.V., Zhang, S.: Error estimates for Lagrange–Galerkin approximation of American options valuation. SIAM Journal on Numerical Analysis 58(1), 48–65 (2020). MR4048013. https://doi.org/10.1137/19M1265958
Del Viva, L., El Hefnawy, M.: Financing decisions: The case of convertible bonds. International Review of Financial Analysis 67, 101393 (2020). ISSN 1057-5219. https://doi.org/10.1016/j.irfa.2019.101393
Deng, G.: American continuous-installment options of barrier type. Journal of Systems Science and Complexity 27(5), 928–949 (2014). MR3264839. https://doi.org/10.1007/s11424-013-0310-y
Deng, G.: Pricing American continuous-installment options under stochastic volatility model. Journal of Mathematical Analysis and Applications 424(1), 802–823 (2015). ISSN 0022-247X. MR3286595. https://doi.org/10.1016/j.jmaa.2014.11.049
Deng, G.: Pricing perpetual American floating strike lookback option under multiscale stochastic volatility model. Chaos, Solitons & Fractals 141, 110411 (2020). MR4171635. https://doi.org/10.1016/j.chaos.2020.110411
Dolinsky, Y.: On shortfall risk minimization for game options. Modern Stochastics: Theory and Applications 7(4), 379–394 (2020). ISSN 2351-6046. MR4195642. https://doi.org/10.15559/20-VMSTA164
Dolinsky, Y., Kifer, Y.: Risk minimization for game options in markets imposing minimal transaction costs. Advances in Applied Probability 48(3), 926–946 (2016). MR3568898. https://doi.org/10.1017/apr.2016.34
Dumitrescu, R., Quenez, M.-C., Sulem, A.: Game options in an imperfect market with default. SIAM Journal on Financial Mathematics 8(1), 532–559 (2017). MR3679314. https://doi.org/10.1137/16M1109102
Dumitrescu, R., Quenez, M.-C., Sulem, A.: American options in an imperfect complete market with default. In: ESAIM: Proceedings and Surveys, pp. 93–110 (2018). MR3883982. https://doi.org/10.1051/proc/201864093
Ekström, E., Peskir, G.: Optimal stopping games for Markov processes. SIAM Journal on Control and Optimization 47(2), 684–702 (2008). MR2385859. https://doi.org/10.1137/060673916
Emmerling, T.J.: Perpetual cancellable American call option. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 22(4), 645–666 (2012). MR2968279. https://doi.org/10.1111/j.1467-9965.2011.00479.x
Gan, X., Yang, Y., Zhang, K.: A robust numerical method for pricing American options under Kou’s jump-diffusion models based on penalty method. Journal of Applied Mathematics and Computing 62(1), 1–21 (2020). MR4056888. https://doi.org/10.1007/s12190-019-01270-1
Gapeev, P.V., Li, L., Wu, Z.: Perpetual American cancellable standard options in models with last passage times. Algorithms 14(1), 3 (2021). ISSN 1999-4893. MR4213424. https://doi.org/10.3390/a14010003
Guo, P.: Pricing of the quanto game option with Asian feature. Journal of Finance and Accounting 8(3), 143 (2020). https://doi.org/10.11648/j.jfa.20200803.15
Guo, P., Chen, Q., Guo, X., Fang, Y.: Path-dependent game options: a lookback case. Review of Derivatives Research 17(1), 113–124 (2014). https://doi.org/10.1007/s11147-013-9092-6
Guo, P., Zhang, J., Wang, Q.: Path-dependent game options with Asian features. Chaos, Solitons & Fractals 141, 110412 (2020). MR4171636. https://doi.org/10.1016/j.chaos.2020.110412
Jeon, J., Kim, G.: An integral equation representation for american better-of option on two underlying assets. Advances in Continuous and Discrete Models 2022(1), 39 (2022). MR4423694. https://doi.org/10.1186/s13662-022-03713-9
Jeon, J., Kim, G.: Analytic valuation formula for American strangle option in the mean-reversion environment. Mathematics 10(15), 2688 (2022). ISSN 2227-7390. https://doi.org/10.3390/math10152688
Jeon, J., Oh, J.: Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems-B 24(2), 755 (2019). MR3927453. https://doi.org/10.3934/dcdsb.2018206
Jin, L., Yuan, X., Peiran, L., Xu, H., Lian, F.: Option features and price discovery in convertible bonds. Journal of Futures Markets 43(3), 384–403 (2023). https://doi.org/10.1002/fut.22391
Kang, M., Jeon, J., Han, H., Lee, S.: Analytic solution for American strangle options using Laplace–Carson transforms. Communications in Nonlinear Science and Numerical Simulation 47, 292–307 (2017). MR3600275. https://doi.org/10.1016/j.cnsns.2016.11.024
Kifer, Y.: Game options. Finance and Stochastics 4(4), 443–463 (Aug 2000). ISSN 0949-2984. MR1779588. https://doi.org/10.1007/PL00013527
Kühn, C., Kyprianou, A.E.: Callable puts as composite exotic options. Mathematical Finance 17(4), 487–502 (2007). MR2352903. https://doi.org/10.1111/j.1467-9965.2007.00313.x
Kyprianou, A.E.: Some calculations for Israeli options. Finance and Stochastics 8(1), 73–86 (2004). MR2022979. https://doi.org/10.1007/s00780-003-0104-5
Lin, S., He, X.-J.: A new integral equation approach for pricing American-style barrier options with rebates. Journal of Computational and Applied Mathematics 383, 113107 (2021). ISSN 0377-0427. MR4134877. https://doi.org/10.1016/j.cam.2020.113107
Lin, S., Zhu, S.-P.: Numerically pricing convertible bonds under stochastic volatility or stochastic interest rate with an ADI-based predictor–corrector scheme. Computers & Mathematics with Applications 79(5), 1393–1419 (2020). ISSN 0898-1221. MR4065791. https://doi.org/10.1016/j.camwa.2019.09.003
Lin, S., Zhu, S.P.: Pricing resettable convertible bonds using an integral equation approach. IMA Journal of Management Mathematics 31(4), 417–443 (12 2019). MR4153131. https://doi.org/10.1093/imaman/dpz015
Lu, X., Putri, E.R.M.: A semi-analytic valuation of American options under a two-state regime-switching economy. Physica A: Statistical Mechanics and its Applications 538, 122968 (2020). ISSN 0378-4371. MR4018608. https://doi.org/10.1016/j.physa.2019.122968
Lv, S., Wu, Z., Zhang, Q.: The Dynkin game with regime switching and applications to pricing game options. Annals of Operations Research 313, 1159–1182 (2022). MR4440783. https://doi.org/10.1007/s10479-020-03656-y
Ma, C., Xu, W., Yuan, G.: Valuation model for Chinese convertible bonds with soft call/put provision under the hybrid willow tree. Quantitative Finance 20(12), 2037–2053 (2020). MR4172759. https://doi.org/10.1080/14697688.2020.1814022
Ma, J., Yang, W., Cui, Z.: CTMC integral equation method for American options under stochastic local volatility models. Journal of Economic Dynamics and Control 128, 104145 (2021). ISSN 0165-1889. MR4270100. https://doi.org/10.1016/j.jedc.2021.104145
Mehrdoust, F., Najafi, A.R., Fallah, S., Samimi, O.: Mixed fractional Heston model and the pricing of American options. Journal of Computational and Applied Mathematics 330, 141–154 (2018). MR3717584. https://doi.org/10.1016/j.cam.2017.08.002
Mehrdoust, F., Noorani, I., Hamdi, A.: Calibration of the double Heston model and an analytical formula in pricing American put option. Journal of Computational and Applied Mathematics 392, 113422 (2021). ISSN 0377-0427. MR4217895. https://doi.org/10.1016/j.cam.2021.113422
Milanov, K., Kounchev, O., Fabozzi, F.J., Kim, Y.S., Rachev, S.T.: A binomial-tree model for convertible bond pricing. The Journal of Fixed Income 22(3), 79–94 (2012). https://doi.org/10.3905/jfi.2012.22.3.079
Milanov, K., Kounchev, O., Fabozzi, F.: A complete model for pricing coco bonds. The Journal of Fixed Income 29(3), 53–67 (2019). https://doi.org/10.3905/jfi.2019.1.077
Mollapourasl, R., Fereshtian, A., Vanmaele, M.: Radial basis functions with partition of unity method for American options with stochastic volatility. Computational Economics 53(1), 259–287 (2019). https://doi.org/10.1007/s10614-017-9739-8
Peskir, G.: Optimal stopping games and Nash equilibrium. Theory of Probability & Its Applications 53(3), 558–571 (2009). MR2759714. https://doi.org/10.1137/S0040585X97983821
Ross, S.M.: Introduction to Probability Models. Academic Press (2014). MR0328973
Roux, A.: Pricing and hedging game options in currency models with proportional transaction costs. International Journal of Theoretical and Applied Finance 19(07), 1650043 (2016). MR3569828. https://doi.org/10.1142/S0219024916500436
Roux, A., Zastawniak, T.: Game options with gradual exercise and cancellation under proportional transaction costs. Stochastics 90(8), 1190–1220 (2018). MR3868262. https://doi.org/10.1080/17442508.2018.1499102
Safaei, M., Neisy, A., Nematollahi, N.: New splitting scheme for pricing American options under the Heston model. Computational Economics 52(2), 405–420 (2018). https://doi.org/10.1007/s10614-017-9686-4
Shiryaev, A.N., Kabanov, Y.M., Kramkov, D.O., Mel’nikov, A.V.: Toward the theory of pricing of options of both European and American types. II. continuous time. Theory of Probability & Its Applications 39(1), 61–102 (1995). MR1348191. https://doi.org/10.1137/1139003
Suzuki, A., Sawaki, K.: The pricing of perpetual game put options and optimal boundaries. In: Recent Advances in Stochastic Operations Research, pp. 175–187. World Scientific (2007). MR2313198. https://doi.org/10.1142/9789812706683_0012
Verwijmeren, P., Yang, A.: The fluctuating maturities of convertible bonds. Journal of Corporate Finance 62, 101576 (2020). ISSN 0929-1199. https://doi.org/10.1016/j.jcorpfin.2020.101576
Yam, S.C.P., Yung, S.P., Zhou, W.: Game call options revisited. Mathematical Finance 24(1), 173–206 (2014). MR3157693. https://doi.org/10.1111/mafi.12000
Zaevski, T.: American strangle options with arbitrary strikes. Journal of Futures Markets 43(7), 880–903 (2023). https://doi.org/10.1002/fut.22419
Zaevski, T.S.: Perpetual game options with a multiplied penalty. Communications in Nonlinear Science and Numerical Simulation 85, 105248 (2020). ISSN 1007-5704. MR4074142. https://doi.org/10.1016/j.cnsns.2020.105248
Zaevski, T.S.: Discounted perpetual game call options. Chaos, Solitons & Fractals 131, 109503 (2020). ISSN 0960-0779. MR4065328. https://doi.org/10.1016/j.chaos.2019.109503
Zaevski, T.S.: Discounted perpetual game put options. Chaos, Solitons & Fractals 137, 109858 (2020). ISSN 0960-0779. MR4099368. https://doi.org/10.1016/j.chaos.2020.109858
Zaevski, T.S.: A new approach for pricing discounted American options. Communications in Nonlinear Science and Numerical Simulation 97, 105752 (2021). ISSN 1007-5704. MR4212896. https://doi.org/10.1016/j.cnsns.2021.105752
Zaevski, T.S.: Pricing cancellable american put options on the finite time horizon. Journal of Futures Markets 42(7), 1284–1303 (2022). https://doi.org/10.1002/fut.22331
Zeitsch, P.J., Davis, T.P.: The price determinants of contingent convertible bonds. Finance Research Letters 43, 102015 (2021). ISSN 1544-6123. https://doi.org/10.1016/j.frl.2021.102015
Zhang, P.G.: Exotic Options. World Scientific (1997). https://doi.org/10.1142/2713
Zhang, Z., Wang, Z., Chen, X.: Pricing convertible bond in uncertain financial market. Journal of Uncertain Systems 14(01), 2150007 (2021). https://doi.org/10.1142/S1752890921500070
Zhu, S.-P., Lin, S., Lu, X.: Pricing puttable convertible bonds with integral equation approaches. Computers & Mathematics with Applications 75(8), 2757–2781 (2018). ISSN 0898-1221. MR3787485. https://doi.org/10.1016/j.camwa.2018.01.007
Zhu, S.-P., He, X.-J., Ping Lu, X.: A new integral equation formulation for American put options. Quantitative Finance 18(3), 483–490 (2018). MR3763154. https://doi.org/10.1080/14697688.2017.1348617