Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations
Volume 11, Issue 1 (2024), pp. 1–29
Pub. online: 5 December 2023
Type: Research Article
Open Access
Received
3 August 2023
3 August 2023
Revised
2 November 2023
2 November 2023
Accepted
2 November 2023
2 November 2023
Published
5 December 2023
5 December 2023
Abstract
The object of investigation is the mixed fractional Brownian motion of the form ${X_{t}}=\kappa {B_{t}^{{H_{1}}}}+\sigma {B_{t}^{{H_{2}}}}$, driven by two independent fractional Brownian motions ${B_{1}^{H}}$ and ${B_{2}^{H}}$ with Hurst parameters ${H_{1}}\lt {H_{2}}$. Strongly consistent estimators of unknown model parameters ${({H_{1}},{H_{2}},{\kappa ^{2}},{\sigma ^{2}})^{\top }}$ are constructed based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for $0\lt {H_{1}}\lt {H_{2}}\lt \frac{3}{4}$.
References
Arcones, M.A.: Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22(4), 2242–2274 (1994). MR1331224
Cai, C., Chigansky, P., Kleptsyna, M.: Mixed Gaussian processes: a filtering approach. Ann. Probab. 44(4), 3032–3075 (2016). MR3531685. https://doi.org/10.1214/15-AOP1041
Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001). MR1873835. https://doi.org/10.2307/3318626
Dozzi, M., Mishura, Y., Shevchenko, G.: Asymptotic behavior of mixed power variations and statistical estimation in mixed models. Stat. Inference Stoch. Process. 18(2), 151–175 (2015). MR3348583. https://doi.org/10.1007/s11203-014-9106-5
Dufitinema, J., Pynnönen, S., Sottinen, T.: Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets. Commun. Stat., Simul. Comput. 51(9), 5264–5287 (2022). MR4491681. https://doi.org/10.1080/03610918.2020.1764581
El-Nouty, C.: The fractional mixed fractional Brownian motion. Stat. Probab. Lett. 65(2), 111–120 (2003). MR2017255
He, X., Chen, W.: The pricing of credit default swaps under a generalized mixed fractional Brownian motion. Physica A 404, 26–33 (2014). MR3188756
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8, p. 390. Bocconi University Press & Springer (2017). MR3752152. https://doi.org/10.1007/978-3-319-71030-3
Kukush, A., Lohvinenko, S., Mishura, Y., Ralchenko, K.: Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend. Stat. Inference Stoch. Process. 25(1), 159–187 (2022). MR4419677. https://doi.org/10.1007/s11203-021-09252-6
Major, P.: Non-central limit theorem for non-linear functionals of vector valued Gaussian stationary random fields. arXiv:1901.04086 [math.PR] (2019)
Miao, Y., Ren, W., Ren, Z.: On the fractional mixed fractional Brownian motion. Appl. Math. Sci. (Ruse) 2(33-36), 1729–1738 (2008). MR2443901
Mishura, Y.: Maximum likelihood drift estimation for the mixing of two fractional brownian motions. In: Trends in Mathematics, pp. 263–280. Springer (2016). MR3708386. https://doi.org/10.1007/978-3-319-07245-6_14
Mishura, Y., Voronov, I.: Construction of maximum likelihood estimator in the mixed fractional–fractional Brownian motion model with double long-range dependence. Mod. Stoch. Theory Appl. 2(2), 147–164 (2015). MR3389587. https://doi.org/10.15559/15-vmsta28
Mishura, Y., Ralchenko, K., Shklyar, S.: Parameter estimation for Gaussian processes with application to the model with two independent fractional Brownian motions. In: Stochastic Processes and Applications. Springer Proc. Math. Stat., vol. 271, pp. 123–146. Springer (2018). MR3903341
Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Springer (2012). MR3076266. https://doi.org/10.1007/978-88-470-2823-4
Nourdin, I., Peccati, G., Podolskij, M.: Quantitative Breuer-Major theorems. Stoch. Process. Appl. 121(4), 793–812 (2011). MR2770907
Sun, L.: Pricing currency options in the mixed fractional Brownian motion. Physica A 392(16), 3441–3458 (2013). MR3069168
Xiao, W.-L., Zhang, W.-G., Zhang, X.-L.: Maximum-likelihood estimators in the mixed fractional Brownian motion. Statistics 45(1), 73–85 (2011). MR2772157
Xiao, W.-L., Zhang, W.-G., Zhang, X., Zhang, X.: Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm. Physica A 391(24), 6418–6431 (2012). MR2972795
Zili, M.: On the mixed fractional Brownian motion. J. Appl. Math. Stoch. Anal. 2006, Art. ID 32435 (2006), 9 pp. MR2253522. https://doi.org/10.1155/JAMSA/2006/32435