Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 1 (2024)
  4. Parameter estimation for fractional mixe ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations
Volume 11, Issue 1 (2024), pp. 1–29
Kostiantyn Ralchenko ORCID icon link to view author Kostiantyn Ralchenko details   Mykyta Yakovliev ORCID icon link to view author Mykyta Yakovliev details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA234
Pub. online: 5 December 2023      Type: Research Article      Open accessOpen Access

Received
3 August 2023
Revised
2 November 2023
Accepted
2 November 2023
Published
5 December 2023

Abstract

The object of investigation is the mixed fractional Brownian motion of the form ${X_{t}}=\kappa {B_{t}^{{H_{1}}}}+\sigma {B_{t}^{{H_{2}}}}$, driven by two independent fractional Brownian motions ${B_{1}^{H}}$ and ${B_{2}^{H}}$ with Hurst parameters ${H_{1}}\lt {H_{2}}$. Strongly consistent estimators of unknown model parameters ${({H_{1}},{H_{2}},{\kappa ^{2}},{\sigma ^{2}})^{\top }}$ are constructed based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for $0\lt {H_{1}}\lt {H_{2}}\lt \frac{3}{4}$.

References

[1] 
Arcones, M.A.: Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22(4), 2242–2274 (1994). MR1331224
[2] 
Cai, C., Chigansky, P., Kleptsyna, M.: Mixed Gaussian processes: a filtering approach. Ann. Probab. 44(4), 3032–3075 (2016). MR3531685. https://doi.org/10.1214/15-AOP1041
[3] 
Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001). MR1873835. https://doi.org/10.2307/3318626
[4] 
Dai, Q., Singleton, K.J.: Specification analysis of affine term structure models. J. Finance 55, 1943–1978 (2000)
[5] 
Ding, Z., Granger, C.W.J., Engle, R.F.: A long memory property of stock market returns and a new model. J. Empir. Finance 1(1), 83–106 (1993)
[6] 
Dozzi, M., Mishura, Y., Shevchenko, G.: Asymptotic behavior of mixed power variations and statistical estimation in mixed models. Stat. Inference Stoch. Process. 18(2), 151–175 (2015). MR3348583. https://doi.org/10.1007/s11203-014-9106-5
[7] 
Dufitinema, J., Pynnönen, S., Sottinen, T.: Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets. Commun. Stat., Simul. Comput. 51(9), 5264–5287 (2022). MR4491681. https://doi.org/10.1080/03610918.2020.1764581
[8] 
El-Nouty, C.: The fractional mixed fractional Brownian motion. Stat. Probab. Lett. 65(2), 111–120 (2003). MR2017255
[9] 
Filatova, D.: Mixed fractional Brownian motion: Some related questions for computer network traffic modeling. In: 2008 International Conference on Signals and Electronic Systems, pp. 393–396 (2008)
[10] 
He, X., Chen, W.: The pricing of credit default swaps under a generalized mixed fractional Brownian motion. Physica A 404, 26–33 (2014). MR3188756
[11] 
Henry, O.T.: Long memory in stock returns: Some international evidence. Appl. Financ. Econ. 12(10), 725–729 (2002)
[12] 
Isserlis, L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12(1/2), 134–139 (1918)
[13] 
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8, p. 390. Bocconi University Press & Springer (2017). MR3752152. https://doi.org/10.1007/978-3-319-71030-3
[14] 
Kukush, A., Lohvinenko, S., Mishura, Y., Ralchenko, K.: Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend. Stat. Inference Stoch. Process. 25(1), 159–187 (2022). MR4419677. https://doi.org/10.1007/s11203-021-09252-6
[15] 
Major, P.: Non-central limit theorem for non-linear functionals of vector valued Gaussian stationary random fields. arXiv:1901.04086 [math.PR] (2019)
[16] 
Miao, Y., Ren, W., Ren, Z.: On the fractional mixed fractional Brownian motion. Appl. Math. Sci. (Ruse) 2(33-36), 1729–1738 (2008). MR2443901
[17] 
Mishura, Y., Ralchenko, K., Shklyar, S.: Maximum likelihood drift estimation for Gaussian process with stationary increments. Austrian J. Stat. 46(3–4), 67–78 (2017)
[18] 
Mishura, Y.: Maximum likelihood drift estimation for the mixing of two fractional brownian motions. In: Trends in Mathematics, pp. 263–280. Springer (2016). MR3708386. https://doi.org/10.1007/978-3-319-07245-6_14
[19] 
Mishura, Y., Voronov, I.: Construction of maximum likelihood estimator in the mixed fractional–fractional Brownian motion model with double long-range dependence. Mod. Stoch. Theory Appl. 2(2), 147–164 (2015). MR3389587. https://doi.org/10.15559/15-vmsta28
[20] 
Mishura, Y., Ralchenko, K., Shklyar, S.: Parameter estimation for Gaussian processes with application to the model with two independent fractional Brownian motions. In: Stochastic Processes and Applications. Springer Proc. Math. Stat., vol. 271, pp. 123–146. Springer (2018). MR3903341
[21] 
Mishura, Y., Ralchenko, K., Zhelezniak, H.: Numerical approach to the drift parameter estimation in the model with two fractional brownian motions. Commun. Stat., Simul. Comput. 1–15 (2022)
[22] 
Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Springer (2012). MR3076266. https://doi.org/10.1007/978-88-470-2823-4
[23] 
Nourdin, I., Peccati, G., Podolskij, M.: Quantitative Breuer-Major theorems. Stoch. Process. Appl. 121(4), 793–812 (2011). MR2770907
[24] 
Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson modeling. IEEE/ACM Trans. Netw. 3(3), 226–244 (1995)
[25] 
Rostek, S., Schöbel, R.: A note on the use of fractional Brownian motion for financial modeling. Econ. Model. 30, 30–35 (2013)
[26] 
Sadique, S., Silvapulle, P.: Long-term memory in stock market returns: International evidence. Int. J. Financ. Econ. 6(1), 59–67 (2001)
[27] 
Sun, L.: Pricing currency options in the mixed fractional Brownian motion. Physica A 392(16), 3441–3458 (2013). MR3069168
[28] 
Thäle, C.: Further remarks on mixed fractional brownian motion. Appl. Math. Sci. 38, 1885–1901 (2009)
[29] 
Xiao, W.-L., Zhang, W.-G., Zhang, X.-L.: Maximum-likelihood estimators in the mixed fractional Brownian motion. Statistics 45(1), 73–85 (2011). MR2772157
[30] 
Xiao, W.-L., Zhang, W.-G., Zhang, X., Zhang, X.: Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm. Physica A 391(24), 6418–6431 (2012). MR2972795
[31] 
Zhang, P., Sun, Q., Xiao, W.-L.: Parameter identification in mixed Brownian–fractional Brownian motions using Powell’s optimization algorithm. Econ. Model. 40, 314–319 (2014)
[32] 
Zhang, W.-G., Xiao, W.-L., He, C.-X.: Equity warrants pricing model under fractional Brownian motion and an empirical study. Expert Syst. Appl. 36(2), 3056–3065 (2009)
[33] 
Zili, M.: On the mixed fractional Brownian motion. J. Appl. Math. Stoch. Anal. 2006, Art. ID 32435 (2006), 9 pp. MR2253522. https://doi.org/10.1155/JAMSA/2006/32435

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractional Brownian motion mixed model strong consistency ergodic theorem asymptotic normality

MSC2010
60G22 62F10 62F12

Metrics
since March 2018
555

Article info
views

374

Full article
views

397

PDF
downloads

74

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy