Gamma mixed fractional Lévy Ornstein–Uhlenbeck process
Volume 11, Issue 1 (2024), pp. 63–83
Pub. online: 5 December 2023
Type: Research Article
Open Access
Received
16 January 2023
16 January 2023
Revised
14 September 2023
14 September 2023
Accepted
12 November 2023
12 November 2023
Published
5 December 2023
5 December 2023
Abstract
In this article, a non-Gaussian long memory process is constructed by the aggregation of independent copies of a fractional Lévy Ornstein–Uhlenbeck process with random coefficients. Several properties and a limit theorem are studied for this new process. Finally, some simulations of the limit process are shown.
References
Aalen, O.O., Gjessing, H.K.: Survival models based on the Ornstein-Uhlenbeck process. Lifetime Data Anal. 10, 407–423 (2004). MR2125423. https://doi.org/10.1007/s10985-004-4775-9
Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian OU based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B, Stat. Methodol. 63(2), 167–241 (2001). MR1841412. https://doi.org/10.1111/1467-9868.00282
Bender, C., Knobloch, R., Oberacker, P.: Maximal inequalities for fractional Lévy and related processes. Stoch. Anal. Appl. 33, 701–714 (2015). MR3359822. https://doi.org/10.1080/07362994.2015.1036167
Bender, C., Lindner, A., Schicks, M.: Finite variation of fractional Lévy processes. J. Theor. Probab. 25, 594–612 (2012). MR2914443. https://doi.org/10.1007/s10959-010-0339-y
Billingsley, P.: Convergence of Probability Measures. Wiley, New York-London-Sydney (1968). MR0233396
Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8, 1–14 (2003). MR1961165. https://doi.org/10.1214/EJP.v8-125
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series, Florida (2003). MR2042661
Douissi, S., Es-Sebaiy, K., Tudor, C.A.: Hermite Ornstein-Uhlenbeck process mixed with a Gamma distribution. Publ. Math. (Debr.) 8443, 1–22 (2020). MR4062581. https://doi.org/10.5486/pmd.2020.8443
Es-Sebaiy, K., Tudor, C.A.: Fractional Ornstein-Uhlenbeck process mixed with a Gamma distribution. Fractals 23(2), 1550032 (2015). MR3375690. https://doi.org/10.1142/S0218348X15500322
Fink, H., Klüppelberg, C.: Fractional Lévy-driven Ornstein-Uhlenbeck processes and stochastic differential equations. Bernoulli 17, 484–506 (2011). MR2798001. https://doi.org/10.3150/10-BEJ281
Glaser, S.: A law of large numbers for the power variation of fractional Lévy processes. Stoch. Anal. Appl. 33, 1–20 (2015). MR3285245. https://doi.org/10.1080/07362994.2014.962045
Igloi, E., Terdik, G.: Long-range dependence trough Gamma-mixed Ornstein-Uhlenbeck process. Electron. J. Probab. 4, 1–33 (1999). MR1713649. https://doi.org/10.1214/EJP.v4-53
Klüppelberg, C., Matsui, M.: Generalized fractional Lévy processes with fractional Brownian motion limit. Adv. Appl. Probab. 47, 1108–1131 (2015). MR3433298. https://doi.org/10.1239/aap/1449859802
Maejima, M., Tudor, C.A.: Wiener integrals with respect to the Hermite process and a non-central limit theorem. Stoch. Anal. Appl. 25(5), 1043–1056 (2007). MR2352951. https://doi.org/10.1080/07362990701540519
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968). MR0242239. https://doi.org/10.1137/1010093
Marquardt, T.: Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 6(12), 1099–1126 (2006). MR2274856. https://doi.org/10.3150/bj/1165269152
Marquardt, T.: Multivariate fractionally integrated CARMA processes. J. Multivar. Anal. 98, 1705–1725 (2007). MR2392429. https://doi.org/10.1016/j.jmva.2006.07.001
Marquardt, T., Stelzer, R.: Multivariate CARMA processes. Stoch. Process. Appl. 117, 96–120 (2007). MR2287105. https://doi.org/10.1016/j.spa.2006.05.014
Mishura, Y., Zili, M.: Stochastic Analysis of Mixed Fractional Gaussian Processes. Elsevier Ltd, United States (2018). MR3793191
Shen, G.J., Wang, Q.B., Yin, X.W.: Parameter estimation for the discretely observed Vasicek model with small fractional Lévy noise. Acta Math. Sin. Engl. Ser. 36, 443–461 (2020). MR4083410. https://doi.org/10.1007/s10114-020-9121-y
Taqqu, M.S., Stoev, S.: Simulation methods for linear fractional stable motion and FARIMA using Fast Furier Transform. Fractals 12(1), 95–121 (2004). MR2052735. https://doi.org/10.1142/S0218348X04002379
Tikanmäki, H., Mishura, Y.: Fractional Lévy processes as a result of compact interval integral transformation. Stoch. Anal. Appl. 29, 1081–1101 (2011). MR2847337. https://doi.org/10.1080/07362994.2011.610172