Almost everywhere continuity of conditional expectations
Volume 11, Issue 3 (2024), pp. 247–263
Pub. online: 11 January 2024
Type: Research Article
Open Access
Received
22 February 2023
22 February 2023
Revised
22 November 2023
22 November 2023
Accepted
25 November 2023
25 November 2023
Published
11 January 2024
11 January 2024
Abstract
A necessary and sufficient condition on a sequence ${\{{\mathcal{A}_{n}}\}_{n\in \mathbb{N}}}$ of σ-subalgebras which assures convergence almost everywhere of conditional expectations for functions in ${L^{\infty }}$ is given. It is proven that for $f\in {L^{\infty }}(\mathcal{A})$
References
Alonso, A.: A counterexample on the continuity of conditional expectations. J. Math. Anal. Appl. 129(1), 1–5 (1988). MR0921373. https://doi.org/10.1016/0022-247X(88)90229-6
Alonso, A., Brambila-Paz, F.: ${L^{p}}$-continuity of conditional expectations. J. Math. Anal. Appl. 221(1), 161–176 (1998). MR1619139. https://doi.org/10.1006/jmaa.1998.5818
Boylan, E.S.: Equiconvergence of martingales. Ann. Math. Stat. 42(2), 552–559 (1971). MR0290422. https://doi.org/10.1214/aoms/1177693405
Fetter, H.: On the continuity of conditional expectations. J. Math. Anal. Appl. 61(1), 227–231 (1977). MR0455110. https://doi.org/10.1016/0022-247X(77)90157-3
Gehr, T., Misailovic, S., Tsankov, P., Vanbever, L., Wiesmann, P., Vechev, M.: Bayonet: probabilistic inference for networks. ACM SIGPLAN Not. 53(4), 586–602 (2018). https://doi.org/10.1145/3296979.3192400
Kozen, D.: Kolmogorov extension, martingale convergence, and compositionality of processes. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 692–699 (2016). MR3776789. https://doi.org/10.1145/2933575.2933610
Neveu, J.: Mathematical Foundations of the Calculus of Probability. Holden-Day Series in Probability and Statistics (1965). MR0198505
Vidmar, M.: A couple of remarks on the convergence of σ-fields on probability spaces. Stat. Probab. Lett. 134, 86–92 (2018). MR3758585. https://doi.org/10.1016/j.spl.2017.10.017