Let ${({\xi _{k}},{\eta _{k}})_{k\ge 1}}$ be independent identically distributed random vectors with arbitrarily dependent positive components and ${T_{k}}:={\xi _{1}}+\cdots +{\xi _{k-1}}+{\eta _{k}}$ for $k\in \mathbb{N}$. The random sequence ${({T_{k}})_{k\ge 1}}$ is called a (globally) perturbed random walk. Consider a general branching process generated by ${({T_{k}})_{k\ge 1}}$ and let ${Y_{j}}(t)$ denote the number of the jth generation individuals with birth times $\le t$. Assuming that $\mathrm{Var}\hspace{0.1667em}{\xi _{1}}\in (0,\infty )$ and allowing the distribution of ${\eta _{1}}$ to be arbitrary, a law of the iterated logarithm (LIL) is proved for ${Y_{j}}(t)$. In particular, an LIL for the counting process of ${({T_{k}})_{k\ge 1}}$ is obtained. The latter result was previously established in the article by Iksanov, Jedidi and Bouzeffour (2017) under the additional assumption that $\mathbb{E}{\eta _{1}^{a}}\lt \infty $ for some $a\gt 0$. In this paper, it is shown that the aforementioned additional assumption is not needed.
Buraczewski et al. (2023) proved a functional limit theorem (FLT) and a law of the iterated logarithm (LIL) for a random Dirichlet series ${\textstyle\sum _{k\ge 2}}\frac{{(\log k)^{\alpha }}}{{k^{1/2+s}}}{\eta _{k}}$ as $s\to 0+$, where $\alpha \gt -1/2$ and ${\eta _{1}},{\eta _{2}},\dots $ are independent identically distributed random variables with zero mean and finite variance. A FLT and a LIL are proved in a boundary case $\alpha =-1/2$. The boundary case is more demanding technically than the case $\alpha \gt -1/2$. A FLT and a LIL for ${\textstyle\sum _{p}}\frac{{\eta _{p}}}{{p^{1/2+s}}}$ as $s\to 0+$, where the sum is taken over the prime numbers, are stated as the conjectures.
This article provides survival probability calculation formulas for bi-risk discrete time risk model with income rate two. More precisely, the possibility for the stochastic process $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}-{\textstyle\sum _{j=1}^{\lfloor t/2\rfloor }}{Y_{j}}$, $u\in \mathbb{N}\cup \{0\}$, to stay positive for all $t\in \{1,\hspace{0.1667em}2,\hspace{0.1667em}\dots ,\hspace{0.1667em}T\}$, when $T\in \mathbb{N}$ or $T\to \infty $, is considered, where the subtracted random part consists of the sum of random variables, which occur in time in the following order: ${X_{1}},\hspace{0.1667em}{X_{2}}+{Y_{1}},\hspace{0.1667em}{X_{3}},\hspace{0.1667em}{X_{4}}+{Y_{2}},\hspace{0.1667em}\dots $ Here ${X_{i}},\hspace{0.1667em}i\in \mathbb{N}$, and ${Y_{j}},\hspace{0.1667em}j\in \mathbb{N}$, are independent copies of two independent, but not necessarily identically distributed, nonnegative and integer-valued random variables X and Y. Following the known survival probability formulas of the similar bi-seasonal model with income rate two, $u+2t-{\textstyle\sum _{i=1}^{t}}{X_{i}}{\mathbb{1}_{\{i\hspace{2.5pt}\text{is odd}\}}}-{\textstyle\sum _{j=1}^{t}}{Y_{i}}{\mathbb{1}_{\{j\hspace{2.5pt}\text{is even}\}}}$, it is demonstrated how the bi-seasonal model is used to express survival probability calculation formulas in the bi-risk case. Several numerical examples are given where the derived theoretical statements are applied.