Combinatorial approach to the calculation of projection coefficients for the simplest Gaussian-Volterra process
Volume 11, Issue 4 (2024), pp. 403–419
Pub. online: 9 April 2024
Type: Research Article
Open Access
Received
25 February 2024
25 February 2024
Revised
19 March 2024
19 March 2024
Accepted
20 March 2024
20 March 2024
Published
9 April 2024
9 April 2024
Abstract
The Gaussian-Volterra process with a linear kernel is considered, its properties are established and projection coefficients are explicitly calculated, i.e. one of possible prediction problems related to Gaussian processes is solved.
References
Bayer, C., Breneis, S.: Markovian approximations of stochastic Volterra equations with the fractional kernel. Quant. Finance 23(1), 53–70 (2023). MR4521278. https://doi.org/10.1080/14697688.2022.2139193
Benth, F.E., Harang, F.A.: Infinite dimensional pathwise Volterra processes driven by Gaussian noise–Probabilistic properties and applications. Electron. J. Probab. 26, 1–42 (2021). MR4309972. https://doi.org/10.1214/21-ejp683
Cass, T., Lim, N.: Skorohod and rough integration for stochastic differential equations driven by Volterra processes. Ann. Inst. Henri Poincaré B, Probab. Stat. 57, 132–168 (2021). MR4255171. https://doi.org/10.1214/20-aihp1074
Coupek, P., Maslowski, B.: Stochastic evolution equations with Volterra noise. Stoch. Process. Appl. 127(3), 877–900 (2017). MR3605714. https://doi.org/10.1016/j.spa.2016.07.003
Duncan, T.E., Maslowski, B., Pasik-Duncan, B.: Linear stochastic differential equations driven by Gauss-Volterra processes and related linear-quadratic control problems. Appl. Math. Optim. 80, 369–389 (2019). MR4008669. https://doi.org/10.1007/s00245-017-9468-3
El Omari, M.: On the Gaussian Volterra processes with power-type kernels. Stoch. Models 40(1), 152–165 (2024). MR4694530. https://doi.org/10.1080/15326349.2023.2212763
Fan, X., Jiang, X.: Stochastic control problem for distribution dependent SDE driven by a Gauss Volterra process. Discrete Contin. Dyn. Syst., Ser. S 16(5), 1041–1061 (2023). MR4571171. https://doi.org/10.3934/dcdss.2023031
Gehringer, J., Li, X.M., Sieber, J.: Functional limit theorems for Volterra processes and applications to homogenization. Nonlinearity 35(4), 1521 (2022). MR4399494. https://doi.org/10.1088/1361-6544/ac4818
Malyarenko, A., Mishura, Y., Ralchenko, K., Shklyar, S.: Entropy and alternative entropy functionals of fractional Gaussian noise as the functions of Hurst index. Fract. Calc. Appl. Anal. 26(3), 1052–1081 (2023). MR4599227. https://doi.org/10.1007/s13540-023-00155-2
Mishura, Y., Shklyar, S.: Gaussian Volterra processes with power-type kernels. part II. Mod. Stoch. Theory Appl. 9(4), 431–452 (2022). MR4510382. https://doi.org/10.15559/22-VMSTA211
Mishura, Y., Ottaviano, S., Vargiolu, T.: Gaussian Volterra processes as models of electricity markets. arXiv:2311.09384. https://doi.org/10.48550/arXiv.2311.09384
Mishura, Y., Shklyar, S.: Gaussian Volterra processes with power-type kernels. part I. Mod. Stoch. Theory Appl. 9(3), 313–338 (2022). MR4462026. https://doi.org/10.15559/22-VMSTA205
Mishura, Y., Ralchenko, K., Schilling, R.L.: Analytical and computational problems related to fractional gaussian noise. Fractal Fract. 6(11), 1–22 (2022). https://doi.org/10.3390/fractalfract6110620
Mishura, Y., Ralchenko, K., Shklyar, S.: General conditions of weak convergence of discrete-time multiplicative scheme to asset price with memory. Risks 8(1), 1–29 (2020). https://doi.org/10.3390/risks8010011
Mishura, Y., Ralchenko, K., Shklyar, S.: Gaussian volterra processes: Asymptotic growth and statistical estimation. Theory Probab. Math. Stat. 108, 149–167 (2023). MR4588243. https://doi.org/10.1090/tpms/1190
Mishura, Y., Shevchenko, G., Shklyar, S.: Gaussian processes with Volterra Kernels. In: Malyarenko, A., Ni, Y., Rančić, M., Silvestrov, S. (eds.) Stochastic Processes, Statistical Methods, and Engineering Mathematics. SPAS 2019. Springer Proceedings in Mathematics & Statistics, vol. 408, pp. 249–276. Springer, Cham (2022). MR4607849. https://doi.org/10.1007/978-3-031-17820-7_13
Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571–587 (1999). MR1704556. https://doi.org/10.2307/3318691
Perestyuk, M., Vyshenskyi, V.: Combinatorics: First Steps. Nova Science Publishers, Incorporated (2021). https://doi.org/10.52305/FIZC1542
Valdivia, A.: Information loss on Gaussian Volterra process. Electron. Commun. Probab. 22, 1–5 (2017). MR3724558. https://doi.org/10.1214/17-ECP79