A Lundberg-type inequality for an inhomogeneous renewal risk model
Volume 2, Issue 2 (2015), pp. 173–184
Pub. online: 31 July 2015
Type: Research Article
Open Access
Received
19 June 2015
19 June 2015
Revised
25 July 2015
25 July 2015
Accepted
26 July 2015
26 July 2015
Published
31 July 2015
31 July 2015
Abstract
We obtain a Lundberg-type inequality in the case of an inhomogeneous renewal risk model. We consider the model with independent, but not necessarily identically distributed, claim sizes and the interoccurrence times. In order to prove the main theorem, we first formulate and prove an auxiliary lemma on large values of a sum of random variables asymptotically drifted in the negative direction.
References
Albrecher, H., Teugels, J.L.: Exponential behavior in the presence of dependence in risk theory. J. Appl. Probab. 43(1), 257–273 (2006). MR2225065. doi:10.1239/jap/1143936258
Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific Publishing (2010). MR2766220. doi:10.1142/9789814282536
Bernackaitė, E., Šiaulys, J.: The exponential moment tail of inhomogeneous renewal process. Stat. Probab. Lett. 97, 9–15 (2015). MR3299745. doi:10.1016/j.spl.2014.10.018
Bieliauskienė, E., Šiaulys, J.: Infinite time ruin probability in inhomogeneous claim case. Liet. Mat. Rink., LMD Darbai 51, 352–356 (2010) (ISSN 0132-2818, available at page www.mii.lt/LMR/)
Blaževičius, K., Bieliauskienė, E., Šiaulys, J.: Finite-time ruin probability in the inhomogeneous claim case. Lith. Math. J. 50(3), 260–270 (2010). MR2719562. doi:10.1007/s10986-010-9084-2
Chen, Y., Ng, K.W.: The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims. Insur. Math. Econ. 40(3), 415–423 (2007). MR2310980. doi:10.1016/j.insmatheco.2006.06.004
Cramér, H.: Historical review of Filip Lundberg’s works on risk theory. Scand. Actuar. J. 1969, 6–12 (1969). MR0347028. doi:10.1080/03461238.1969.10404602
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modeling Extremal Events. Springer (1997). MR1458613. doi:10.1007/978-3-642-33483-2
Embrechts, P., Veraverbeke, N.: Estimates for probability of ruin with special emphasis on the possibility of large claims. Insur. Math. Econ. 1(1), 55–72 (1982). MR0652832. doi:10.1016/0167-6687(82)90021-X
Lefèvre, C., Picard, P.: A nonhomogeneous risk model for insurance. Comput. Math. Appl. 51, 325–334 (2006). MR2203083. doi:10.1016/j.camwa.2005.11.005
Li, J., Tang, Q., Wu, R.: Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model. Adv. Appl. Probab. 42(4), 1126–1146 (2010). MR2796679. doi:10.1239/aap/1293113154
Mikosch, T.: Non-life Insurance Mathematics. Springer (2009). MR2503328. doi:10.1007/978-3-540-88233-6
Raducan, A.M., Vernic, R., Zbaganu, G.: Recursive calculation of ruin probabilities at or before claim instants for non-identically distributed claims. ASTIN Bull. 45, 421–443 (2015). doi:10.1017/asb.2014.30
Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Process for Insurance and Finance. John Wiley & Sons Ltd (1998). MR1680267. doi:10.1002/9780470317044
Sgibnev, M.S.: Submultiplicative moments of the suppremum of a random walk with negative drift. Stat. Probab. Lett. 32, 377–383 (1997). MR1602211. doi:10.1016/S0167-7152(96)00097-1
Smith, W.L.: On the elementary renewal theorem for non-identically distributed variables. Pac. J. Math. 14(2), 673–699 (1964). MR0165598. doi:10.2140/pjm.1964.14.673
Thorin, O.: Some comments on the Sparre Andersen model in the risk theory. ASTIN Bull. 8(1), 104–125 (1974). MR0351020
Wang, K., Wang, Y., Gao, Q.: Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate. Methodol. Comput. Appl. Probab. 15(1), 109–124 (2013). MR3030214. doi:10.1007/s11009-011-9226-y