Based on a discrete version of the Pollaczeck–Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber–Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.
The discrete time risk model with two seasons and dependent claims is considered. An algorithm is created for computing the values of the ultimate ruin probability. Theoretical results are illustrated with numerical examples.
Let $\{{\xi _{1}},{\xi _{2}},\dots \}$ be a sequence of independent but not necessarily identically distributed random variables. In this paper, the sufficient conditions are found under which the tail probability $\mathbb{P}(\,{\sup _{n\geqslant 0}}\,{\sum _{i=1}^{n}}{\xi _{i}}>x)$ can be bounded above by ${\varrho _{1}}\exp \{-{\varrho _{2}}x\}$ with some positive constants ${\varrho _{1}}$ and ${\varrho _{2}}$. A way to calculate these two constants is presented. The application of the derived bound is discussed and a Lundberg-type inequality is obtained for the ultimate ruin probability in the inhomogeneous renewal risk model satisfying the net profit condition on average.
This paper deals with the discrete-time risk model with nonidentically distributed claims. We suppose that the claims repeat with time periods of three units, that is, claim distributions coincide at times $\{1,4,7,\dots \}$, at times $\{2,5,8,\dots \}$, and at times $\{3,6,9,\dots \}$. We present the recursive formulas to calculate the finite-time and ultimate ruin probabilities. We illustrate the theoretical results by several numerical examples.
We deal with a generalization of the classical risk model when an insurance company gets additional funds whenever a claim arrives and consider some practical approaches to the estimation of the ruin probability. In particular, we get an upper exponential bound and construct an analogue to the De Vylder approximation for the ruin probability. We compare results of these approaches with statistical estimates obtained by the Monte Carlo method for selected distributions of claim sizes and additional funds.