Approximations of the ruin probability in a discrete time risk model        
        
    
        Volume 7, Issue 3 (2020), pp. 221–243
            
    
                    Pub. online: 4 August 2020
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
2 June 2020
                                    2 June 2020
                Revised
18 July 2020
                                    18 July 2020
                Accepted
18 July 2020
                                    18 July 2020
                Published
4 August 2020
                    4 August 2020
Abstract
Based on a discrete version of the Pollaczeck–Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber–Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.
            References
 Asmussen, S., Albrecher, H.: Ruin Probabilities vol. 14. World scientific Singapore (2010) MR2766220. https://doi.org/10.1142/9789814282536
 Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., Nesbitt, C.J.: Actuarial Mathematics. The Society of Actuaries, Illinois (1997) MR2011229. https://doi.org/10.1080/10920277.1999.10595793
 Cheng, S., Gerber, H.U., Shiu, E.S.: Discounted probabilities and ruin theory in the compound binomial model. Insur. Math. Econ. 26(2), 239–250 (2000) MR1787839. https://doi.org/10.1016/S0167-6687(99)00053-0
 Damarackas, J., S˘iaulys, J.: A note on the net profit condition for discrete and classical risk models. Lith. Math. J. 55(4), 465–473 (2015) MR3424708. https://doi.org/10.1007/s10986-015-9292-x
 Feller, W.: An Introduction to Probability Theory and Its Applications I. John Wiley and Sons, New York (1968) MR0228020
 Grandell, J.: Mixed Poisson Processes. Springer, Dordrecht (1997) MR1463943. https://doi.org/10.1007/978-1-4899-3117-7
 Li, S.: Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time risk models. Scand. Actuar. J. 2005(4), 271–284 (2005) MR2164047. https://doi.org/10.1080/03461230510009808
 Li, S., Lu, Y., Garrido, J.: A review of discrete-time risk models. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 103(2), 321–337 (2009) MR2582636. https://doi.org/10.1007/BF03191910
 Puri, P.S.., Goldie, C.M.: Poisson mixtures and quasi-infinite divisibility of distributions. J. Appl. Probab. 16(1), 138–153 (1979) MR0520944. https://doi.org/10.2307/3213382
 Santana, D.J., González-Hernández, J., Rincón, L.: Approximation of the ultimate ruin probability in the classical risk model using Erlang mixtures. Methodol. Comput. Appl. Probab. 19(3), 775–798 (2017) MR3683971. https://doi.org/10.1007/s11009-016-9515-6
 Steutel, F.W., Van Eenige, M.J.A.: Note on the approximation of distributions on Z+ by mixtures of negative binomial distributions. Stoch. Models 13(2), 271–274 (1997) MR1442369. https://doi.org/10.1080/15326349708807426
 Willmot, G.: On recursive evaluation of mixed Poisson probabilities and related quantities. Scand. Actuar. J. 1993(2), 114–133 (1993) MR1272853
 Willmot, G., Lin, S.: Risk modeling with the mixed Erlang distribution. Appl. Stoch. Models Bus. Ind. 27(1), 2–16 (2011) MR2752449. https://doi.org/10.1002/asmb.838
 Willmot, G., Woo, J.K.: On the class of Erlang mixtures with risk theoretic applications. N. Am. Actuar. J. 11(2), 99–115 (2007) MR2380721. https://doi.org/10.1080/10920277.2007.10597450
 
                 
            