Regularity of paths of stochastic measures
Pub. online: 26 November 2024
Type: Research Article
Open Access
Received
10 September 2024
10 September 2024
Revised
15 November 2024
15 November 2024
Accepted
15 November 2024
15 November 2024
Published
26 November 2024
26 November 2024
Abstract
Random functions $\mu (x)$, generated by values of stochastic measures are considered. The Besov regularity of the continuous paths of $\mu (x)$, $x\in {[0,1]^{d}}$, is proved. Fourier series expansion of $\mu (x)$, $x\in [0,2\pi ]$, is obtained. These results are proved under weaker conditions than similar results in previous papers.
References
Bai, S.: Limit theorems for conservative flows on multiple stochastic integrals. J. Theor. Probab. 35, 917–948 (2022). MR4414409
Bai, S., Owada, T., Wang, Y.: A functional non-central limit theorem for multiple-stable processes with long-range dependence. Stoch. Process. Appl. 130, 5768–5801 (2020). MR4127346
Bodnarchuk, I.: Averaging principle for a stochastic cable equation. Mod. Stoch. Theory Appl. 7, 449–467 (2020). MR4195646
Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966). MR199631
Ciesielski, Z., Kerkyacharian, G., Roynette, B.: Quelques espaces fonctionnels associés à des processus gaussiens. Stud. Math. 107, 171–204 (1993). MR1244574
Čoupek, P., Ondreját, M.: Besov–Orlicz path regularity of non-Gaussian processes. Potential Anal. 60, 307–339 (2024). MR4696040
Durrett, R.: Probability: Theory and Examples. Cambridge Univ. Press (2019). MR3930614
Dzhaparidze, K., van Zanten, H.: Krein’s spectral theory and the Paley–Wiener expansion for fractional Brownian motion. Ann. Probab. 33, 620–644 (2005). MR2123205
Fageot, J., Unser, M., Ward, J.P.: On the Besov regularity of periodic Lévy noises. Appl. Comput. Harmon. Anal. 42, 21–36 (2017). MR3574559
Herren, V.: Lévy-type processes and Besov spaces. Potential Anal. 7, 689–704 (1997). MR1473649
Kahane, J.-P.: Some Random Series of Functions. Cambridge Univ. Press, Cambridge (1993). MR833073
Kamont, A.: A discrete characterization of Besov spaces. Approx. Theory Appl. 13, 63–77 (1997). MR1750304
Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992). MR1167198
Manikin, B.: Heat equation with a general stochastic measure in a bounded domain. Modern Stoch. Theory Appl., 1–22 (2024). https://doi.org/10.15559/24-VMSTA262
Manikin, B., Radchenko, V.: Sample path properties of multidimensional integral with respect to stochastic measure. Mod. Stoch. Theory Appl. 11, 421–437 (2024). MR4795242
Ondreját, M., Veraar, M.: On temporal regularity of stochastic convolutions in 2-smooth Banach spaces. Ann. Inst. Henri Poincaré Probab. Stat. 56, 1792–1808 (2020). MR4116708
Radchenko, V.: Besov regularity of stochastic measures. Stat. Probab. Lett. 77, 822–825 (2007). MR2369688
Radchenko, V.: Sample functions of stochastic measures and Besov spaces. Theory Probab. Appl. 54, 160–168 (2010). MR2766653
Radchenko, V.: Fourier series expansion of stochastic measures. Theory Probab. Appl. 63, 318–326 (2018). MR3796494
Radchenko, V.: Averaging principle for equation driven by a stochastic measure. Stochastics 91(6), 905–915 (2019). MR3985803
Radchenko, V.: General Stochastic Measures. Integration, Path Properties, and Equations. ISTE Ltd, London (2022). MR4687103
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). MR1280932
Shen, G., Wu, J.-L., Yin, X.: Averaging principle for fractional heat equations driven by stochastic measures. Appl. Math. Lett. 106, 106404 (2020). MR4090373
Vakhania, N.N., Tarieladze, V.I., Chobanian, S.A.: Probability Distributions on Banach Spaces. D. Reidel Publishing Co., Dordrecht (1987). MR1435288
Zygmund, A.: Trigonometric Series, 3rd edn. Cambridge Univ. Press, Cambridge (2002). MR236587