A group action on increasing sequences of set-indexed Brownian motions
Volume 2, Issue 2 (2015), pp. 185–198
Pub. online: 6 August 2015
Type: Research Article
Open Access
Received
23 February 2015
23 February 2015
Revised
29 July 2015
29 July 2015
Accepted
30 July 2015
30 July 2015
Published
6 August 2015
6 August 2015
Abstract
We prove that a square-integrable set-indexed stochastic process is a set-indexed Brownian motion if and only if its projection on all the strictly increasing continuous sequences are one-parameter G-time-changed Brownian motions. In addition, we study the “sequence-independent variation” property for group stationary-increment stochastic processes in general and for a set-indexed Brownian motion in particular. We present some applications.
References
Cairoli, R., Walsh, J.B.: Stochastic integrals in the plane. Acta Math. 134, 111–183 (1975). doi:10.1007/BF02392100
Herbin, E., Merzbach, E.: A characterization of the set-indexed Brownian motion by increasing paths. C. R. Acad. Sci. Paris, Sec. 1 343, 767–772 (2006). doi:10.1016/j.crma.2006.11.009
Merzbach, E., Nualart, D.: Different kinds of two parameter martingales. Isr. J. Math. 52(3), 193–207 (1985). doi:10.1007/BF02786515
Merzbach, E., Yosef, A.: Set-indexed Brownian motion on increasing paths. J. Theor. Probab. 22, 883–890 (2009). doi:10.1007/s10959-008-0188-0
Zakai, M.: Some classes of two-parameter martingales. Ann. Probab. 9, 255–265 (1981). doi:10.1214/aop/1176994466