Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. About stability of equilibria of one sys ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

About stability of equilibria of one system of stochastic delay differential equations with exponential nonlinearity
Leonid Shaikhet ORCID icon link to view author Leonid Shaikhet details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA274
Pub. online: 13 February 2025      Type: Research Article      Open accessOpen Access

Received
12 October 2024
Revised
1 February 2025
Accepted
1 February 2025
Published
13 February 2025

Abstract

A system of two nonlinear delay differential equations under stochastic perturbations is considered. Nonlinearity of the exponential type in each equation of the system under consideration depends on the both variables of the system. The stability in probability of the zero and nonzero equilibria of the system is studied via the general method of Lyapunov functionals construction and the method of linear matrix inequalities (LMIs). The obtained results are illustrated via examples and figures with numerical simulations of solutions of a considered system of stochastic differential equations. The proposed way of investigation can be applied to nonlinear systems of higher dimension and with other types of nonlinearity, both for delay differential equations and for difference equations.

References

[1] 
Beretta, E., Kolmanovskii, V., Shaikhet, L.: Stability of epidemic model with time delays influenced by stochastic perturbations. Math. Comput. Simul. 45(3-4), 269–277 (1998). Special Issue “Delay Systems”. MR1622405. https://doi.org/10.1016/S0378-4754(97)00106-7
[2] 
Berezansky, L., Braverman, E., Idels, L.: Nicholson’s blowflies differential equations revisited: Main results and open problems. Appl. Math. Model. 34(6), 1405–1417 (2010). MR2592579. https://doi.org/10.1016/j.apm.2009.08.027
[3] 
Boyd, S., El-Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA, USA (1994). MR1284712. https://doi.org/10.1137/1.9781611970777
[4] 
Bradul, N., Shaikhet, L.: Stability of the positive point of equilibrium of Nicholson’s blowflies equation with stochastic perturbations: numerical analysis. Discrete Dyn. Nat. Soc. 25, 92959 (2007). MR2346516. https://doi.org/10.1155/2007/92959
[5] 
Chen, W., Wang, W.: Global exponential stability for a delay differential neoclassical growth model. Adv. Differ. Equ. 2014(9), 325 (2014). MR3360574. https://doi.org/10.1186/1687-1847-2014-325
[6] 
Choi, H.H.: A new method for variable structure control system design: A linear matrix inequality approach. Automatica 33, 2089–2092 (1997). MR1486914. https://doi.org/10.1016/S0005-1098(97)00118-0
[7] 
Ding, X., Li, W.: Stability and bifurcation of numerical discretization Nicholson blowflies equation with delay. Discrete Dyn. Nat. Soc. 2006, 19413 (2006), 12 pp. MR2244293. https://doi.org/10.1155/DDNS/2006/19413
[8] 
El-Metwally, E., Grove, E.A., Ladas, G., Levins, R., Radin, M.: On the difference equation ${x_{n+1}}=\alpha +\beta {x_{n-1}}{e^{-{x_{n}}}}$. Nonlinear Anal. 47(7), 4623–4634 (2001). MR1975856. https://doi.org/10.1016/S0362-546X(01)00575-2
[9] 
Feckan, M., Marynets, K.: Study of differential equations with exponential nonlinearities via the lower and upper solutions’ method. Numer. Anal. Appl. Math. 1(2), 1–7 (2020). https://doi.org/10.36686/Ariviyal.NAAM.2020.01.02.007
[10] 
Fridman, E., Shaikhet, L.: Stabilization by using artificial delays: an LMI approach. Automatica 81, 429–437 (2017). MR3654628. https://doi.org/10.1016/j.automatica.2017.04.015
[11] 
Fridman, E., Shaikhet, L.: Delay-dependent LMI conditions for stability of stochastic systems with delay term in the form of Stieltjes integral. In: Proceedings of 57th IEEE Conference on Decision and Control, Fontainebleau, Miami Beach, Florida, USA, pp. 6567–6572 (2018)
[12] 
Fridman, E., Shaikhet, L.: Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay. Syst. Control Lett. 124, 83–91 (2019). MR3899077. https://doi.org/10.1016/j.sysconle.2018.12.007
[13] 
Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer, Berlin, Germany (1972). MR0346904
[14] 
Gouaisbaut, F., Dambrine, M., Richard, J.P.: Robust control of delay systems: a sliding mode control design via LMI. Syst. Control Lett. 46(4), 219–230 (2002). MR2010239. https://doi.org/10.1016/S0167-6911(01)00199-2
[15] 
Kara, M.: Investigation of the global dynamics of two exponential-form difference equations systems. Electron. Res. Arch. 31(11), 6697–6724 (2023). MR4657209. https://doi.org/10.3934/era.2023338
[16] 
Kolmanovskii, V., Shaikhet, L.: Some peculiarities of the general method of Lyapunov functionals construction. Appl. Math. Lett. 15(3), 355–360 (2002). MR1891559. https://doi.org/10.1016/S0893-9659(01)00143-4
[17] 
Kolmanovskii, V., Shaikhet, L.: About one application of the general method of Lyapunov functionals construction. Int. J. Robust Nonlinear Control 13(9), 805–818 (2003). MR1998313. https://doi.org/10.1002/rnc.846
[18] 
Li, J., Zhang, B., Li, Y.: Dependence of stability of Nicholson’s blowflies equation with maturation stage on parameters. J. Appl. Anal. Comput. 7(12), 670–680 (2017). MR3602445. https://doi.org/10.11948/2017042
[19] 
Li, W.T., Fan, Y.H.: Existence and global attractivity of positive periodic solutions for the impulsive delay Nicholson’s blowflies model. J. Comput. Appl. Math. 201(1), 55–68 (2007). MR2293538. https://doi.org/10.1016/j.cam.2006.02.001
[20] 
Matsumoto, A., Szidarovszky, F.: Delay differential neoclassical growth model. J. Econ. Behav. Organ. 78, 272–289 (2011)
[21] 
Matsumoto, A., Szidarovszky, F.: Asymptotic behavior of a delay differential neoclassical growth model. Sustainability 5, 440–455 (2013)
[22] 
Nakamura, M., Ozawa, T.: Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth. Math. Z. 231, 479–487 (1999). MR1704989. https://doi.org/10.1007/PL00004737
[23] 
Nguang, S.K.: Robust H∞ control of a class of nonlinear systems with delayed state and control: an LMI approach. In: Proceedings of 37th IEEE Conference on Decision and Control, Tampa, Florida, USA, pp. 2384–2389 (1998)
[24] 
Nicholson, A.J.: An outline of the dynamics of animal populations. Aust. J. Zool. 2(1), 9–65 (1954)
[25] 
Niculescu, S.I.: ${H^{\infty }}$ memory less control with an α-stability constraint for time delays systems: an LMI approach. IEEE Trans. Autom. Control 43(5), 739–743 (1998). MR1618043. https://doi.org/10.1109/9.668850
[26] 
Papaschinopoulos, G., Ellina, G., Papadopoulos, K.B.: Asymptotic behavior of the positive solutions of an exponential type system of difference equations. Appl. Math. Comput. 245, 181–190 (2014). MR3260707. https://doi.org/10.1016/j.amc.2014.07.074
[27] 
Papaschinopoulos, G., Fotiades, N., Schinas, C.J.: On a system of difference equations including negative exponential terms. J. Differ. Equ. Appl. 20(5-6), 717–732 (2014). MR3210311. https://doi.org/10.1080/10236198.2013.814647
[28] 
Papaschinopoulos, G., Radin, M.A., Schinas, C.J.: On the system of two difference equations of exponential form: ${x_{n+1}}=a+b{x_{n-1}}{e^{-{y_{n}}}}$, ${y_{n+1}}=c+d{y_{n-1}}{e^{-{x_{n}}}}$. Math. Comput. Model. 54(11), 2969–2977 (2011). MR2841840. https://doi.org/10.1016/j.mcm.2011.07.019
[29] 
Papaschinopoulos, G., Radin, M.A., Schinas, C.J.: Study of the asymptotic beha-vior of the solutions of three systems of difference equations of exponential form. Appl. Math. Comput. 218(9), 5310–5318 (2012). MR2870051. https://doi.org/10.1016/j.amc.2011.11.014
[30] 
Seuret, A., Gouaisbaut, F.: Hierarchy of LMI conditions for the stability analysis of time-delay systems. Syst. Control Lett. 81, 1–7 (2015). MR3353689. https://doi.org/10.1016/j.sysconle.2015.03.007
[31] 
Shaikhet, L.: Lyapunov Functionals and Stability of Stochastic Difference Equations. Springer Science & Business Media, London, UK (2011). MR3076210. https://doi.org/10.1007/978-3-319-00101-2
[32] 
Shaikhet, L.: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Springer, Berlin, Germany (2013). MR3076210. https://doi.org/10.1007/978-3-319-00101-2
[33] 
Shaikhet, L.: Stability of equilibrium states for a stochastically perturbed Mosquito popu-lation equation. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 21(2-3), 185–196 (2014). MR3298848
[34] 
Shaikhet, L.: Stability of equilibrium states for a stochastically perturbed exponential type system of difference equations. J. Comput. Appl. Math. 290, 92–103 (2015). MR3370394. https://doi.org/10.1016/j.cam.2015.05.002
[35] 
Shaikhet, L.: Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete Contin. Dyn. Syst., Ser. B 22(4), 1565–1573 (2017). MR3639178. https://doi.org/10.3934/dcdsb.2017075
[36] 
Shaikhet, L.: Stability of the zero and positive equilibria of two connected neoclassical growth models under stochastic perturbations. Commun. Nonlinear Sci. Numer. Simul. 65, 86–93 (2019). Pub. online: August 2018. MR3860057. https://doi.org/10.1016/j.cnsns.2018.07.033
[37] 
Shaikhet, L.: About stability of nonlinear stochastic differential equations with state-dependent delay. Symmetry 14(11), 2307 (2022). https://www.mdpi.com/2073-8994/14/11/2307/pdf
[38] 
Shaikhet, L.: Stability of equilibria of exponential type system of three differential equations under stochastic perturbations. Math. Comput. Simul. 206, 105–117 (2023). MR4517038. https://doi.org/10.1016/j.matcom.2022.11.008
[39] 
Shaikhet, L.: Stability of the exponential type system of stochastic difference equations. Mathematics 11(18), 3975 (2023). Special Issue “Nonlinear Stochastic Dynamics and Control and Its Applications”. https://www.mdpi.com/2227-7390/11/18/3975
[40] 
Thai, T.H., Dai, N.A., Anh, P.T.: Global dynamics of some system of second-order difference equations. Electron. Res. Arch. 29(6), 4159–4175 (2021). MR4342296. https://doi.org/10.3934/era.2021077
[41] 
Wan, H., Zhu, H.: A new model with delay for mosquito population dynamics. Math. Biosci. Eng. 11(6), 1395–1410 (2014). MR3263418. https://doi.org/10.3934/mbe.2014.11.1395

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Nonlinear differential equation stochastic perturbations asymptotic mean square stability stability in probability linear matrix inequality (LMI) exponential nonlinearity

MSC2010
34G20 34K20 34K50

Metrics
since March 2018
118

Article info
views

60

Full article
views

46

PDF
downloads

18

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy