Approximations related to tempered stable distributions
Pub. online: 27 February 2025
Type: Research Article
Open Access
Received
14 August 2024
14 August 2024
Revised
24 January 2025
24 January 2025
Accepted
15 February 2025
15 February 2025
Published
27 February 2025
27 February 2025
Abstract
In this article, we first obtain, for the Kolmogorov distance, an error bound between a tempered stable and a compound Poisson distribution (CPD) and also an error bound between a tempered stable and an α-stable distribution via Stein’s method. For the smooth Wasserstein distance, an error bound between two tempered stable distributions (TSDs) is also derived. As examples, we discuss the approximation of a TSD to normal and variance-gamma distributions (VGDs). As corollaries, the corresponding limit theorem follows.
References
Arras, B., Houdré, C.: On Stein’s Method for Infinitely Divisible Laws with Finite First Moment. Springer (2019) MR3931309
Barbour, A.D.: Stein’s method for diffusion approximations. Probab. Theory Relat. Fields 84(3), 297–322 (1990) MR1035659. https://doi.org/10.1007/BF01197887
Blumenthal, R.M., Getoor, R.K.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech., 493–516 (1961) MR0123362
Boyarchenko, S.I., Levendorskiǐ, S.Z.: Option pricing for truncated lévy processes. Int. J. Theor. Appl. Finance 3(03), 549–552 (2000) MR3951952. https://doi.org/10.1142/S0219024919500110
Čekanavičius, V.: Approximation Methods in Probability Theory. Springer (2016) MR3467748. https://doi.org/10.1007/978-3-319-34072-2
Čekanavičius, V., Vellaisamy, P.: Approximating by convolution of the normal and compound poisson laws via stein’s method. Lith. Math. J. 58, 127–140 (2018) MR3814710. https://doi.org/10.1007/s10986-018-9392-5
Chen, P., Xu, L.: Approximation to stable law by the lindeberg principle. J. Appl. Math. Anal. Appl. 480(2), 123338 (2019) MR4000076. https://doi.org/10.1016/j.jmaa.2019.07.028
Chen, P., Nourdin, I., Xu, L., Yang, X., Zhang, R.: Non-integrable stable approximation by stein’s method. J. Theor. Probab., 1–50 (2022) MR4414414. https://doi.org/10.1007/s10959-021-01094-5
Döbler, C., Gaunt, R.E., Vollmer, S.J.: An iterative technique for bounding derivatives of solutions of stein equations (2017) MR3724564. https://doi.org/10.1214/17-EJP118
Gaunt, R.E.: On stein’s method for products of normal random variables and zero bias couplings. Bernoulli 23(4B), 3311–3345 (2017) MR3654808. https://doi.org/10.3150/16-BEJ848
Gaunt, R.E.: Variance-gamma approximation via stein’s method. Electron. J. Probab. 19(38), 1–33 (2014) MR3194737. https://doi.org/10.1214/EJP.v19-3020
Gaunt, R.E.: Wasserstein and kolmogorov error bounds for variance-gamma approximation via stein’s method i. J. Theor. Probab. 33(1), 465–505 (2020) MR4064309. https://doi.org/10.1007/s10959-018-0867-4
Gaunt, R.E., Li, S.: Bounding kolmogorov distances through wasserstein and related integral probability metrics. J. Appl. Math. Anal. Appl. 522(1), 126985 (2023) MR4533915. https://doi.org/10.1016/j.jmaa.2022.126985
Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables vol. 2420. Addison-wesley (1968) MR0233400
Goldstein, L., Reinert, G.: Stein’s method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab. 7(4), 935–952 (1997) MR1484792. https://doi.org/10.1214/aoap/1043862419
Houdré, C., Pérez-Abreu, V., Surgailis, D.: Interpolation, correlation identities, and inequalities for infinitely divisible variables. J. Fourier Anal. Appl. 4, 651–668 (1998) MR1665993. https://doi.org/10.1007/BF02479672
Jin, X., Li, X., Lu, J.: A kernel bound for non-symmetric stable distribution and its applications. J. Appl. Math. Anal. Appl. 488(2), 124063 (2020) MR4081550. https://doi.org/10.1016/j.jmaa.2020.124063
Kesavan, S.: Topics in functional analysis and applications. Wiley Eastern Ltd. (1989) MR0990018
Küchler, U., Tappe, S.: Bilateral gamma distributions and processes in financial mathematics. Stoch. Process. Appl. 118(2), 261–283 (2008). doi:https://doi.org/10.1016/j.spa.2007.04.006. MR2376902
Küchler, U., Tappe, S.: Tempered stable distributions and processes. Stoch. Process. Appl. 123(12), 4256–4293 (2013). doi:https://doi.org/10.1016/j.spa.2013.06.012. MR3096354
Kumar, A., Vellaisamy, P., Viens, F.: Poisson approximation to the convolution of psds. Probab. Math. Stat. 42, 63–80 (2022) MR4490669. https://doi.org/10.37190/0208-4147.00056
Ley, C., Reinert, G., Swan, Y.: Stein’s method for comparison of univariate distributions. Probab. Surv. 14, 1–52 (2017) MR3595350. https://doi.org/10.1214/16-PS278
Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: from Stein’s Method to Universality vol. 192. Cambridge University Press (2012) MR2962301. https://doi.org/10.1017/CBO9781139084659
Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117(6), 677–707 (2007) MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
S Upadhye, N., Barman, K.: A unified approach to stein’s method for stable distributions. Probab. Surv. 19, 533–589 (2022) MR4507474. https://doi.org/10.1214/20-ps354
Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, vol. 6, pp. 583–603 (1972). University of California Press MR0402873
Stein, E.M., Shakarchi, R.: Fourier Analysis: an Introduction vol. 1. Princeton University Press (2011) MR1970295
Sztonyk, P.: Estimates of tempered stable densities. J. Theor. Probab. 23(1), 127–147 (2010) MR2591907. https://doi.org/10.1007/s10959-009-0208-8
Upadhye, N.S., Čekanavičius, V., Vellaisamy, P.: On Stein operators for discrete approximations. Bernoulli 23(4A), 2828–2859 (2017). doi:https://doi.org/10.3150/16-BEJ829. MR3648047
Vellaisamy, P., Čekanavičius, V.: Infinitely divisible approximations for sums of m-dependent random variables. J. Theor. Probab. 31, 2432–2445 (2018) MR3866620. https://doi.org/10.1007/s10959-017-0774-0
Villani, C.: Topics in Optimal Transportation vol. 58. American Mathematical Soc. (2021) MR1964483. https://doi.org/10.1090/gsm/058
Wang, Y., Yuan, C.: Convergence of the euler-maruyama method for stochastic differential equations with respect to semimartingales. Appl. Math. Sci. (Ruse) 1(41-44), 2063–2077 (2007) MR2369925
Xu, L.: Approximation of stable law in wasserstein-1 distance by stein’s method. Ann. Appl. Probab. 29(1), 458–504 (2019) MR3910009. https://doi.org/10.1214/18-AAP1424