Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Lp-solution of generalized BSDEs in a ge ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Lp-solution of generalized BSDEs in a general filtration with stochastic monotone coefficients
Badr Elmansouri ORCID icon link to view author Badr Elmansouri details   Mohamed El Otmani ORCID icon link to view author Mohamed El Otmani details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA287
Pub. online: 4 November 2025      Type: Research Article      Open accessOpen Access

Received
28 January 2025
Revised
28 August 2025
Accepted
28 October 2025
Published
4 November 2025

Abstract

Multidimensional generalized backward stochastic differential equations (GBSDEs) are studied within a general filtration that supports a Brownian motion under weak assumptions on the associated data. The existence and uniqueness of solutions in ${\mathbb{L}^{p}}$ for $p\in (1,2)$ are established. The results apply to generators that are stochastic monotone in the y-variable, stochastic Lipschitz in the z-variable, and satisfy a general stochastic linear growth condition.

References

[1] 
Ansel, J.-P., Stricker, C.: Décomposition de Kunita-Watanabe. Séminaire Probab. Strasbg. 27, 30–32 (1993). MR1308549. https://doi.org/10.1007/BFb0087960
[2] 
Bahlali, K.: Backward stochastic differential equations with locally lipschitz coefficient. C. R. Acad. Sci. Paris Ser. I 333(5), 481–486 (2001). MR1859241. https://doi.org/10.1016/S0764-4442(01)02063-8
[3] 
Bahlali, K., Essaky, E., Hassani, M.: Existence and uniqueness of multidimensional BSDEs and of systems of degenerate PDEs with superlinear growth generator. SIAM J. Math. Anal. 47(6), 4251–4288 (2015). MR3419886. https://doi.org/10.1137/130947933
[4] 
Bielecki, T.R., Jeanblanc, M., Rutkowski, M.: Credit Risk Modeling. Osaka University Press, Osaka (2009). MR1869476
[5] 
Bismut, J.-M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44(2), 384–404 (1973). MR0329726. https://doi.org/10.1016/0022-247X(73)90066-8
[6] 
Briand, P., Delyon, B., Hu, Y., Pardoux, E., Stoica, L.: ${L^{p}}$ solutions of backward stochastic differential equations. Stoch. Process. Appl. 108(1), 109–129 (2003). MR2008603. https://doi.org/10.1016/S0304-4149(03)00089-9
[7] 
Carbone, R., Ferrario, B., Santacroce, M.: Backward stochastic differential equations driven by càdlàg martingales. Theory Probab. Appl. 52(2), 304–314 (2008). MR2742510. https://doi.org/10.1137/S0040585X97983055
[8] 
Ceci, C., Cretarola, A., Russo, F.: BSDEs under partial information and financial applications. Stoch. Process. Appl. 124(8), 2628–2653 (2014). MR3200728. https://doi.org/10.1016/j.spa.2014.03.003
[9] 
Ceci, C., Cretarola, A., Russo, F.: GKW representation theorem under restricted information. An application to risk minimization. Stoch. Dyn. 14(2), 1350019 (2014). 23 pages. MR3190214. https://doi.org/10.1142/S0219493713500196
[10] 
Chen, S.: ${L^{p}}$ solutions of one-dimensional backward stochastic differential equations with continuous coefficients. Stoch. Anal. Appl. 28(5), 820–841 (2010). MR2739319. https://doi.org/10.1080/07362994.2010.503456
[11] 
Darling, R.W.R., Pardoux, E.: Backwards SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25(3), 1135–1159 (1997). MR1457614. https://doi.org/10.1214/aop/1024404508
[12] 
Dumitrescu, R., Grigorova, M., Quenez, M.-C., Sulem, A.: BSDEs with default jump. In: Celledoni, E., Nunno, G.D., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds.) Computation and Combinatorics in Dynamics, Stochastics and Control. Abel Symp., pp. 303–324. Springer, Cham (2018). MR3966458. https://doi.org/10.1007/978-3-030-01593-0
[13] 
Eddahbi, M., Fakhouri, I., Ouknine, Y.: ${L^{p}}$ $(p\ge 2)$-solutions of generalized BSDEs with jumps and monotone generator in a general filtration. Mod. Stoch. Theory Appl. 4(1), 25–63 (2017). MR3633930. https://doi.org/10.15559/17-VMSTA73
[14] 
El Jamali, M.: ${L^{p}}$-solution for BSDEs driven by a Lévy process. Random Oper. Stoch. Equ. 31(2), 185–197 (2023). MR4595377. https://doi.org/10.1515/rose-2023-2006
[15] 
El Karoui, N., Huang, S.-J.: A general result of existence and uniqueness of backward stochastic differential equations. In: Backward Stochastic Differential Equations (Paris 1995–1996). Pitman Res. Notes Math. Ser., vol. 364, pp. 27–36. Longman, Harlow (1997). MR1752673
[16] 
El Karoui, N., Quenez, M.-C.: Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33(1), 29–66 (1995). MR1311659. https://doi.org/10.1137/S0363012992232579
[17] 
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997). MR1434407. https://doi.org/10.1111/1467-9965.00022
[18] 
El Otmani, M.: Generalized bsde driven by a lévy process. Int. J. Stoch. Anal. 2006(1), 085407 (2006). MR2253532. https://doi.org/10.1155/JAMSA/2006/85407
[19] 
Elhachemy, M., Elmansouri, B., El Otmani, M.: Infinite horizon doubly reflected generalized BSDEs in a general filtration under stochastic conditions. Bol. Soc. Parana. Mat. 43, 1–19 (2025). MR4930623. https://doi.org/10.5269/bspm.68171
[20] 
Elmansouri, B., El Otmani, M.: Generalized backward stochastic differential equations with jumps in a general filtration. Random Oper. Stoch. Equ. 31(3), 205–216 (2023). MR4635367. https://doi.org/10.1515/rose-2023-2007
[21] 
Elmansouri, B., El Otmani, M.: Generalized BSDEs driven by RCLL martingales with stochastic monotone coefficients. Mod. Stoch.: Theory Appl. 11(1), 109–128 (2024). MR4692020. https://doi.org/10.15559/23-vmsta239
[22] 
Elmansouri, B., Marzougue, M.: ${\mathbb{L}^{p}}$-solutions of backward stochastic differential equations with default time. Stat. Probab. Lett. 223, 110407 (2025). MR4891664. https://doi.org/10.1016/j.spl.2025.110407
[23] 
Engelbert, H.-J., Peskir, G.: Stochastic differential equations for sticky brownian motion. Stoch. Int. J. Probab. Stoch. Process. 86(6), 993–1021 (2014). MR3271518. https://doi.org/10.1080/17442508.2014.899600
[24] 
Fan, S.J., Jiang, L.: ${L^{p}}$ $(p\gt 1)$ solutions for one-dimensional BSDEs with linear-growth generators. J. Appl. Math. Comput. 38(1), 295–304 (2012). MR2886682. https://doi.org/10.1007/s12190-011-0479-y
[25] 
Fan, S., Liu, D.: A class of bsde with integrable parameters. Stat. Probab. Lett. 80(23–24), 2024–2031 (2010). MR2734276. https://doi.org/10.1016/j.spl.2010.09.009
[26] 
Fan, S., Jiang, L., Davison, M.: Uniqueness of solutions for multidimensional BSDEs with uniformly continuous generators. C. R. Acad. Sci. Paris, Ser. I 348(11–12), 683–686 (2010). MR2652498. https://doi.org/10.1016/j.crma.2010.03.013
[27] 
Fattler, T., Grothaus, M., Voßhall, R.: Construction and analysis of a sticky reflected distorted Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 52(2), 735–762 (2016). MR3498008. https://doi.org/10.1214/14-AIHP650
[28] 
Hamadène, S.: Multidimensional backward stochastic differential equations with uniformly continuous coefficients. Bernoulli, 517–534 (2003). MR1997495. https://doi.org/10.3150/bj/1065444816
[29] 
Hamadene, S., Lepeltier, J.-P.: Backward equations, stochastic control and zero-sum stochastic differential games. Stoch.: Int. J. Probab. Stoch. Process. 54(3–4), 221–231 (1995). MR1382117. https://doi.org/10.1080/17442509508834006
[30] 
Hamadene, S., Lepeltier, J.-P., Peng, S.: BSDEs with continuous coefficients and stochastic differential games. In: Backward Stochastic Differential Equations (Paris 1995–1996). Pitman Res. Notes Math. Ser., vol. 364, pp. 115–128. Longman, Harlow (1997). MR1752678
[31] 
Hu, Y.: Probabilistic interpretation of a system of quasilinear elliptic partial differential equations under neumann boundary conditions. Stoch. Process. Appl. 48(1), 107–121 (1993). MR1237170. https://doi.org/10.1016/0304-4149(93)90109-H
[32] 
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren Math. Wiss., vol. 288. Springer, (2003). MR1943877. https://doi.org/10.1007/978-3-662-05265-5
[33] 
Jeanblanc, M., Le Cam, Y.: Progressive enlargement of filtrations with initial times. Stoch. Process. Appl. 119(8), 2523–2543 (2009). MR2532211. https://doi.org/10.1016/j.spa.2008.12.009
[34] 
Jeanblanc, M., Le Cam, Y.: Immersion property and credit risk modelling. In: Delbaen, F., Rásonyi, M., Stricker, C. (eds.) Optimality and Risk – Modern Trends in Mathematical Finance: The Kabanov Festschrift, pp. 99–132. Springer, Berlin (2009). MR2648600. https://doi.org/10.1007/978-3-642-02608-9_6
[35] 
Klimsiak, T., Rozkosz, A.: Dirichlet forms and semilinear elliptic equations with measure data. J. Funct. Anal. 265(6), 890–925 (2013). MR3067790. https://doi.org/10.1016/j.jfa.2013.05.028
[36] 
Kruse, T., Popier, A.: Bsdes with monotone generator driven by brownian and poisson noises in a general filtration. Stochastics 88(4), 491–539 (2016). MR3473849. https://doi.org/10.1080/17442508.2015.1090990
[37] 
Kruse, T., Popier, A.: ${L^{p}}$-solution for BSDEs with jumps in the case p<2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration’. Stochastics 89(8), 1201–1227 (2017). MR3742328. https://doi.org/10.1080/17442508.2017.1290095
[38] 
Kusuoka, S.: A remark on default risk models. In: Advances in Mathematical Economics, pp. 69–82. Springer (1999). MR1722700. https://doi.org/10.1007/978-4-431-65895-5_5
[39] 
Li, X., Fan, S.: Weighted ${L^{p}}\hspace{3.08331pt}(p\ge 1)$ solutions of random time horizon BSDEs with stochastic monotonicity generators (2024). https://arxiv.org/abs/2410.01543. https://doi.org/10.48550/arXiv.2410.01543
[40] 
Li, X., Zhang, Y., Fan, S.: Weighted solutions of random time horizon BSDEs with stochastic monotonicity and general growth generators and related PDEs (2024). https://arxiv.org/abs/2402.14435. MR4939508. https://doi.org/10.1016/j.spa.2025.104758
[41] 
Liang, G., Lyons, T., Qian, Z.: Backward stochastic dynamics on a filtered probability space. Ann. Probab. 39(4), 1422–1448 (2011). MR2857245. https://doi.org/10.1214/10-AOP588
[42] 
Lions, P.-L., Sznitman, A.-S.: Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37(4), 511–537 (1984). MR0745330. https://doi.org/10.1002/cpa.3160370408
[43] 
Pardoux, È.: BSDEs, weak convergence and homogenization of semilinear PDEs. In: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998). NATO Sci. Ser. C: Math. Phys. Ser., vol. 528, pp. 503–549. Kluwer Academic, Dordrecht (1999). MR1695013
[44] 
Pardoux, E., Peng, S.: Backward SDE and quasilinear parabolic PDEs. In: Rozovskii, B.L., Sowers, R. (eds.) Stochastic Partial Differential Equations and Their Applications. Lect. Notes Control Inf. Sci., vol. 176, pp. 200–217. Springer (1992). MR1176764. https://doi.org/10.1007/BFb0007334
[45] 
Pardoux, É.: Generalized discontinuous backward stochastic differential equations. In: Backward Stochastic Differential Equations (Paris, 1995–1996). Pitman Res. Notes Math. Ser., vol. 364, pp. 207–219. Longman (1997). MR1752684. https://doi.org/10.1016/S0377-0427(97)00124-6
[46] 
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
[47] 
Pardoux, E., Răşcanu, A.: Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, vol. 69. Springer, Switzerland (2014). MR3308895. https://doi.org/10.1007/978-3-319-05714-9
[48] 
Pardoux, É., Zhang, S.: Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Relat. Fields 110, 535–558 (1998). MR1626963. https://doi.org/10.1007/s004400050158
[49] 
Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37(1–2), 61–74 (1991). MR1149116. https://doi.org/10.1080/17442509108833727
[50] 
Peng, S., Xu, X.: BSDEs with random default time and related zero-sum stochastic differential games. C. R. Math. 348(3–4), 193–198 (2010). MR2600076. https://doi.org/10.1016/j.crma.2009.11.009
[51] 
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Stoch. Model. Appl. Probab., vol. 21, Springer, Berlin, Heidelberg (2004). MR2273672. https://doi.org/10.1007/978-3-662-10061-5
[52] 
Xiao, L.-S., Fan, S.-J., Xu, N.: ${L^{p}}\hspace{3.08331pt}(p\ge 1)$ solutions of multidimensional BSDEs with monotone generators in general time intervals. Stoch. Dyn. 15(01), 1550002 (2015). MR3285319. https://doi.org/10.1142/S0219493715500021
[53] 
Yao, S.: ${L^{p}}$ solutions of backward stochastic differential equations with jumps. Stoch. Process. Appl. 127(11), 3465–3511 (2017). MR3707235. https://doi.org/10.1016/j.spa.2017.03.005
[54] 
Yong, J.: Completeness of security markets and solvability of linear backward stochastic differential equations. J. Math. Anal. Appl. 319(1), 333–356 (2006). MR2217865. https://doi.org/10.1016/j.jmaa.2005.07.065

Full article PDF XML
Full article PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Generalized backward stochastic differential equation stochastic monotone generators stochastic Lipschitz generators Lp-solution general filtration

MSC2020
60H05 60H10 60H15 34F05 60H30 35R60

Funding
This research was supported by the National Center for Scientific and Technical Research (CNRST), Morocco.

Metrics
since March 2018
24

Article info
views

4

Full article
views

3

PDF
downloads

0

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

Journal

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy