-solution of generalized BSDEs in a general filtration with stochastic monotone coefficients        
        
    
                    Pub. online: 4 November 2025
                    
        Type: Research Article
            
                
            
Open Access
        
            
    
                Received
28 January 2025
                                    28 January 2025
                Revised
28 August 2025
                                    28 August 2025
                Accepted
28 October 2025
                                    28 October 2025
                Published
4 November 2025
                    4 November 2025
Abstract
Multidimensional generalized backward stochastic differential equations (GBSDEs) are studied within a general filtration that supports a Brownian motion under weak assumptions on the associated data. The existence and uniqueness of solutions in ${\mathbb{L}^{p}}$ for $p\in (1,2)$ are established. The results apply to generators that are stochastic monotone in the y-variable, stochastic Lipschitz in the z-variable, and satisfy a general stochastic linear growth condition.
            References
Ansel, J.-P., Stricker, C.: Décomposition de Kunita-Watanabe. Séminaire Probab. Strasbg. 27, 30–32 (1993). MR1308549. https://doi.org/10.1007/BFb0087960
Bahlali, K.: Backward stochastic differential equations with locally lipschitz coefficient. C. R. Acad. Sci. Paris Ser. I 333(5), 481–486 (2001). MR1859241. https://doi.org/10.1016/S0764-4442(01)02063-8
Bahlali, K., Essaky, E., Hassani, M.: Existence and uniqueness of multidimensional BSDEs and of systems of degenerate PDEs with superlinear growth generator. SIAM J. Math. Anal. 47(6), 4251–4288 (2015). MR3419886. https://doi.org/10.1137/130947933
Bielecki, T.R., Jeanblanc, M., Rutkowski, M.: Credit Risk Modeling. Osaka University Press, Osaka (2009). MR1869476
Bismut, J.-M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44(2), 384–404 (1973). MR0329726. https://doi.org/10.1016/0022-247X(73)90066-8
Briand, P., Delyon, B., Hu, Y., Pardoux, E., Stoica, L.: ${L^{p}}$ solutions of backward stochastic differential equations. Stoch. Process. Appl. 108(1), 109–129 (2003). MR2008603. https://doi.org/10.1016/S0304-4149(03)00089-9
Carbone, R., Ferrario, B., Santacroce, M.: Backward stochastic differential equations driven by càdlàg martingales. Theory Probab. Appl. 52(2), 304–314 (2008). MR2742510. https://doi.org/10.1137/S0040585X97983055
Ceci, C., Cretarola, A., Russo, F.: BSDEs under partial information and financial applications. Stoch. Process. Appl. 124(8), 2628–2653 (2014). MR3200728. https://doi.org/10.1016/j.spa.2014.03.003
Ceci, C., Cretarola, A., Russo, F.: GKW representation theorem under restricted information. An application to risk minimization. Stoch. Dyn. 14(2), 1350019 (2014). 23 pages. MR3190214. https://doi.org/10.1142/S0219493713500196
Chen, S.: ${L^{p}}$ solutions of one-dimensional backward stochastic differential equations with continuous coefficients. Stoch. Anal. Appl. 28(5), 820–841 (2010). MR2739319. https://doi.org/10.1080/07362994.2010.503456
Darling, R.W.R., Pardoux, E.: Backwards SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25(3), 1135–1159 (1997). MR1457614. https://doi.org/10.1214/aop/1024404508
Dumitrescu, R., Grigorova, M., Quenez, M.-C., Sulem, A.: BSDEs with default jump. In: Celledoni, E., Nunno, G.D., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds.) Computation and Combinatorics in Dynamics, Stochastics and Control. Abel Symp., pp. 303–324. Springer, Cham (2018). MR3966458. https://doi.org/10.1007/978-3-030-01593-0
Eddahbi, M., Fakhouri, I., Ouknine, Y.: ${L^{p}}$ $(p\ge 2)$-solutions of generalized BSDEs with jumps and monotone generator in a general filtration. Mod. Stoch. Theory Appl. 4(1), 25–63 (2017). MR3633930. https://doi.org/10.15559/17-VMSTA73
El Jamali, M.: ${L^{p}}$-solution for BSDEs driven by a Lévy process. Random Oper. Stoch. Equ. 31(2), 185–197 (2023). MR4595377. https://doi.org/10.1515/rose-2023-2006
El Karoui, N., Huang, S.-J.: A general result of existence and uniqueness of backward stochastic differential equations. In: Backward Stochastic Differential Equations (Paris 1995–1996). Pitman Res. Notes Math. Ser., vol. 364, pp. 27–36. Longman, Harlow (1997). MR1752673
El Karoui, N., Quenez, M.-C.: Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33(1), 29–66 (1995). MR1311659. https://doi.org/10.1137/S0363012992232579
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997). MR1434407. https://doi.org/10.1111/1467-9965.00022
El Otmani, M.: Generalized bsde driven by a lévy process. Int. J. Stoch. Anal. 2006(1), 085407 (2006). MR2253532. https://doi.org/10.1155/JAMSA/2006/85407
Elhachemy, M., Elmansouri, B., El Otmani, M.: Infinite horizon doubly reflected generalized BSDEs in a general filtration under stochastic conditions. Bol. Soc. Parana. Mat. 43, 1–19 (2025). MR4930623. https://doi.org/10.5269/bspm.68171
Elmansouri, B., El Otmani, M.: Generalized backward stochastic differential equations with jumps in a general filtration. Random Oper. Stoch. Equ. 31(3), 205–216 (2023). MR4635367. https://doi.org/10.1515/rose-2023-2007
Elmansouri, B., El Otmani, M.: Generalized BSDEs driven by RCLL martingales with stochastic monotone coefficients. Mod. Stoch.: Theory Appl. 11(1), 109–128 (2024). MR4692020. https://doi.org/10.15559/23-vmsta239
Elmansouri, B., Marzougue, M.: ${\mathbb{L}^{p}}$-solutions of backward stochastic differential equations with default time. Stat. Probab. Lett. 223, 110407 (2025). MR4891664. https://doi.org/10.1016/j.spl.2025.110407
Engelbert, H.-J., Peskir, G.: Stochastic differential equations for sticky brownian motion. Stoch. Int. J. Probab. Stoch. Process. 86(6), 993–1021 (2014). MR3271518. https://doi.org/10.1080/17442508.2014.899600
Fan, S.J., Jiang, L.: ${L^{p}}$ $(p\gt 1)$ solutions for one-dimensional BSDEs with linear-growth generators. J. Appl. Math. Comput. 38(1), 295–304 (2012). MR2886682. https://doi.org/10.1007/s12190-011-0479-y
Fan, S., Liu, D.: A class of bsde with integrable parameters. Stat. Probab. Lett. 80(23–24), 2024–2031 (2010). MR2734276. https://doi.org/10.1016/j.spl.2010.09.009
Fan, S., Jiang, L., Davison, M.: Uniqueness of solutions for multidimensional BSDEs with uniformly continuous generators. C. R. Acad. Sci. Paris, Ser. I 348(11–12), 683–686 (2010). MR2652498. https://doi.org/10.1016/j.crma.2010.03.013
Fattler, T., Grothaus, M., Voßhall, R.: Construction and analysis of a sticky reflected distorted Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 52(2), 735–762 (2016). MR3498008. https://doi.org/10.1214/14-AIHP650
Hamadène, S.: Multidimensional backward stochastic differential equations with uniformly continuous coefficients. Bernoulli, 517–534 (2003). MR1997495. https://doi.org/10.3150/bj/1065444816
Hamadene, S., Lepeltier, J.-P.: Backward equations, stochastic control and zero-sum stochastic differential games. Stoch.: Int. J. Probab. Stoch. Process. 54(3–4), 221–231 (1995). MR1382117. https://doi.org/10.1080/17442509508834006
Hamadene, S., Lepeltier, J.-P., Peng, S.: BSDEs with continuous coefficients and stochastic differential games. In: Backward Stochastic Differential Equations (Paris 1995–1996). Pitman Res. Notes Math. Ser., vol. 364, pp. 115–128. Longman, Harlow (1997). MR1752678
Hu, Y.: Probabilistic interpretation of a system of quasilinear elliptic partial differential equations under neumann boundary conditions. Stoch. Process. Appl. 48(1), 107–121 (1993). MR1237170. https://doi.org/10.1016/0304-4149(93)90109-H
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren Math. Wiss., vol. 288. Springer, (2003). MR1943877. https://doi.org/10.1007/978-3-662-05265-5
Jeanblanc, M., Le Cam, Y.: Progressive enlargement of filtrations with initial times. Stoch. Process. Appl. 119(8), 2523–2543 (2009). MR2532211. https://doi.org/10.1016/j.spa.2008.12.009
Jeanblanc, M., Le Cam, Y.: Immersion property and credit risk modelling. In: Delbaen, F., Rásonyi, M., Stricker, C. (eds.) Optimality and Risk – Modern Trends in Mathematical Finance: The Kabanov Festschrift, pp. 99–132. Springer, Berlin (2009). MR2648600. https://doi.org/10.1007/978-3-642-02608-9_6
Klimsiak, T., Rozkosz, A.: Dirichlet forms and semilinear elliptic equations with measure data. J. Funct. Anal. 265(6), 890–925 (2013). MR3067790. https://doi.org/10.1016/j.jfa.2013.05.028
Kruse, T., Popier, A.: Bsdes with monotone generator driven by brownian and poisson noises in a general filtration. Stochastics 88(4), 491–539 (2016). MR3473849. https://doi.org/10.1080/17442508.2015.1090990
Kruse, T., Popier, A.: ${L^{p}}$-solution for BSDEs with jumps in the case p<2: corrections to the paper ‘BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration’. Stochastics 89(8), 1201–1227 (2017). MR3742328. https://doi.org/10.1080/17442508.2017.1290095
Kusuoka, S.: A remark on default risk models. In: Advances in Mathematical Economics, pp. 69–82. Springer (1999). MR1722700. https://doi.org/10.1007/978-4-431-65895-5_5
Li, X., Fan, S.: Weighted ${L^{p}}\hspace{3.08331pt}(p\ge 1)$ solutions of random time horizon BSDEs with stochastic monotonicity generators (2024). https://arxiv.org/abs/2410.01543. https://doi.org/10.48550/arXiv.2410.01543
Li, X., Zhang, Y., Fan, S.: Weighted solutions of random time horizon BSDEs with stochastic monotonicity and general growth generators and related PDEs (2024). https://arxiv.org/abs/2402.14435. MR4939508. https://doi.org/10.1016/j.spa.2025.104758
Liang, G., Lyons, T., Qian, Z.: Backward stochastic dynamics on a filtered probability space. Ann. Probab. 39(4), 1422–1448 (2011). MR2857245. https://doi.org/10.1214/10-AOP588
Lions, P.-L., Sznitman, A.-S.: Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37(4), 511–537 (1984). MR0745330. https://doi.org/10.1002/cpa.3160370408
Pardoux, È.: BSDEs, weak convergence and homogenization of semilinear PDEs. In: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998). NATO Sci. Ser. C: Math. Phys. Ser., vol. 528, pp. 503–549. Kluwer Academic, Dordrecht (1999). MR1695013
Pardoux, E., Peng, S.: Backward SDE and quasilinear parabolic PDEs. In: Rozovskii, B.L., Sowers, R. (eds.) Stochastic Partial Differential Equations and Their Applications. Lect. Notes Control Inf. Sci., vol. 176, pp. 200–217. Springer (1992). MR1176764. https://doi.org/10.1007/BFb0007334
Pardoux, É.: Generalized discontinuous backward stochastic differential equations. In: Backward Stochastic Differential Equations (Paris, 1995–1996). Pitman Res. Notes Math. Ser., vol. 364, pp. 207–219. Longman (1997). MR1752684. https://doi.org/10.1016/S0377-0427(97)00124-6
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
Pardoux, E., Răşcanu, A.: Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, vol. 69. Springer, Switzerland (2014). MR3308895. https://doi.org/10.1007/978-3-319-05714-9
Pardoux, É., Zhang, S.: Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Relat. Fields 110, 535–558 (1998). MR1626963. https://doi.org/10.1007/s004400050158
Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37(1–2), 61–74 (1991). MR1149116. https://doi.org/10.1080/17442509108833727
Peng, S., Xu, X.: BSDEs with random default time and related zero-sum stochastic differential games. C. R. Math. 348(3–4), 193–198 (2010). MR2600076. https://doi.org/10.1016/j.crma.2009.11.009
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Stoch. Model. Appl. Probab., vol. 21, Springer, Berlin, Heidelberg (2004). MR2273672. https://doi.org/10.1007/978-3-662-10061-5
Xiao, L.-S., Fan, S.-J., Xu, N.: ${L^{p}}\hspace{3.08331pt}(p\ge 1)$ solutions of multidimensional BSDEs with monotone generators in general time intervals. Stoch. Dyn. 15(01), 1550002 (2015). MR3285319. https://doi.org/10.1142/S0219493715500021
Yao, S.: ${L^{p}}$ solutions of backward stochastic differential equations with jumps. Stoch. Process. Appl. 127(11), 3465–3511 (2017). MR3707235. https://doi.org/10.1016/j.spa.2017.03.005
Yong, J.: Completeness of security markets and solvability of linear backward stochastic differential equations. J. Math. Anal. Appl. 319(1), 333–356 (2006). MR2217865. https://doi.org/10.1016/j.jmaa.2005.07.065