An algorithm is proposed for simulation of superpositions of Ornstein–Uhlenbeck processes which may have short- or long-range dependencies and specified marginal distributions. The algorithm is based on the Bondesson–Rosinski representation of the supOU process as a shot-noise process and enables a clear constructive view on the structure of supOU processes. The use of the proposed algorithm is demonstrated for eight positive marginal distributions and eight entire real line marginal distributions when the explicit formulae for the Lévy density are available or not.
The so-called multi-mixed fractional Brownian motions (mmfBm) and multi-mixed fractional Ornstein–Uhlenbeck (mmfOU) processes are studied. These processes are constructed by mixing by superimposing or mixing (infinitely many) independent fractional Brownian motions (fBm) and fractional Ornstein–Uhlenbeck processes (fOU), respectively. Their existence as ${L^{2}}$ processes is proved, and their path properties, viz. long-range and short-range dependence, Hölder continuity, p-variation, and conditional full support, are studied.