Integral representation with respect to fractional Brownian motion under a log-Hölder assumption
Volume 2, Issue 3 (2015): PRESTO-2015, pp. 219–232
Pub. online: 25 September 2015
Type: Research Article
Open Access
Received
6 September 2015
6 September 2015
Revised
13 September 2015
13 September 2015
Accepted
14 September 2015
14 September 2015
Published
25 September 2015
25 September 2015
Abstract
We show that if a random variable is the final value of an adapted log-Hölder continuous process, then it can be represented as a stochastic integral with respect to a fractional Brownian motion with adapted integrand. In order to establish this representation result, we extend the definition of the fractional integral.
References
Azmoodeh, E., Mishura, Y., Valkeila, E.: On hedging European options in geometric fractional Brownian motion market model. Stat. Decis. 27(2), 129–143 (2009) MR2662719. doi:10.1524/stnd.2009.1021
Li, W.V., Shao, Q.-M.: Gaussian processes: Inequalities, small ball probabilities and applications. Handb. Stat. 19, 533–597 (2001) MR1861734. doi:10.1016/S0169-7161(01)19019-X
Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes vol. 1929. Springer (2008) MR2378138. doi:10.1007/978-3-540-75873-0
Mishura, Y., Shevchenko, G.: Small ball properties and representation results. arXiv:math.PR/1508.07134 (2015)
Mishura, Y., Shevchenko, G., Valkeila, E.: Random variables as pathwise integrals with respect to fractional Brownian motion. Stoch. Process. Appl. 123(6), 2353–2369 (2013) MR3038509. doi:10.1016/j.spa.2013.02.015
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993) MR1347689
Shevchenko, G., Viitasaari, L.: Integral representation with adapted continuous integrand with respect to fractional Brownian motion. Stoch. Anal. Appl. 32(6), 934–943 (2014) MR3270688. doi:10.1080/07362994.2014.948725
Viitasaari, L.: Integral representation of random variables with respect to Gaussian processes. To appear in Bernoulli, available at arXiv:math.PR/1307.7559 (2013)
Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998) MR1640795. doi:10.1007/s004400050171