Tempered Hermite process
Volume 2, Issue 4 (2015), pp. 327–341
Pub. online: 25 September 2015
Type: Research Article
Open Access
Received
9 July 2015
9 July 2015
Revised
7 September 2015
7 September 2015
Accepted
11 September 2015
11 September 2015
Published
25 September 2015
25 September 2015
Abstract
A tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak convergence limit of a certain discrete chaos process.
References
Avram, F., Taqqu, M.S.: Noncentral limit theorems and Appell polynomials. Ann. Probab. 15, 767–775 (1987). MR0885142. doi:10.1214/aop/1176992170
Bai, S., Taqqu, M.S.: Generalized Hermite processes, discrete chaos and limit theorems. Stoch. Process. Appl. 124, 1710–1739 (2014). MR3163219. doi:10.1016/j.spa.2013.12.011
Baricz, Á.: Bounds for modified Bessel functions of the first and second kinds. Proc. Edinb. Math. Soc. 53, 575–599 (2010). MR2720238. doi:10.1017/S0013091508001016
Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968). MR0233396
Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991). MR1093459. doi:10.1007/978-1-4419-0320-4
Davydov, Y.: The invariance principle for stationary processes. Teor. Veroâtn. Primen. 15, 498–509 (1970). MR0283872
Dobrushin, R.L., Major, P.: Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 27–52 (1979). MR0550122. doi:10.1007/BF00535673
Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2002). MR1920153
Friedlander S., K., Topper, L.: Turbulence: Classical Papers on Statistical Theory. Interscience Publishers, New York (1962). MR0118165
Gaunt, R.E.: Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420, 373–386 (2014). MR3229830. doi:10.1016/j.jmaa.2014.05.083
Giraitis, L., Koul, H.L., Surgailis, D.: Large Sample Inference for Long Memory Processes (2012). World Scientific Publishing Company Incorporated. MR2977317. doi:10.1142/p591
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals and Products, 6th edn. Academic Press (2000). MR1773820
Lamperti, J.: Semi-stable stochastic processes. Trans. Am. Math. Soc. 104, 62–78 (1962). MR0138128. doi:10.1090/S0002-9947-1962-0138128-7
Maejima, M.: On a class of self-similar processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 62, 235–245 (1983). MR0688988. doi:10.1007/BF00538799
Meerschaert, M.M., Sabzikar, F.: Tempered fractional Brownian motion. Stat. Probab. Lett. 83(10), 2269–2275 (2013). MR3093813. doi:10.1016/j.spl.2013.06.016
Meerschaert, M.M., Sabzikar, F.: Stochastic integration with respect to tempered fractional Brownian motion. Stoch. Process. Appl. 124, 2363–2387 (2014). MR3192500. doi:10.1016/j.spa.2014.03.002
Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin/Boston (2012). MR2884383
Meerschaert, M.M., Sabzikar, Phanikumar M. S, F., Zeleke, A.: Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech. Theory Exp. 14, P09023 (2014) (13 pp.). doi:10.1088/1742-5468/2014/09/P09023
Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams: A survey with Computer Implementation. Springer (2011). MR2791919. doi:10.1007/978-88-470-1679-8
Pipiras, V., Taqqu, M.: Convergence of weighted sums of random variables with long range dependence. Stoch. Process. Appl. 90, 157–174 (2000). MR1787130. doi:10.1016/S0304-4149(00)00040-5
Pipiras, V., Taqqu, M.: Integration questions related to fractional Brownian motion. Probab. Theory Relat. Fields 118, 251–291 (2000). MR1790083. doi:10.1007/s440-000-8016-7
Sabzikar, Meerschaert M. M, F., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015). MR3342453. doi:10.1016/j.jcp.2014.04.024
Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall (1994). MR1280932
Taqqu, M.S.: Convergence of integrated processes of arbitrary Hermite rank. Probab. Theory Relat. Fields 50(1), 53–83 (1979). MR0550123. doi:10.1007/BF00535674
Whitt, W.: Stochastic-Process Limits. Springer, New York (2002). MR1876437