Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 4 (2015)
  4. Tempered Hermite process

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Tempered Hermite process
Volume 2, Issue 4 (2015), pp. 327–341
Farzad Sabzikar  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA34
Pub. online: 25 September 2015      Type: Research Article      Open accessOpen Access

Received
9 July 2015
Revised
7 September 2015
Accepted
11 September 2015
Published
25 September 2015

Abstract

A tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak convergence limit of a certain discrete chaos process.

1 Introduction

The Hermite processes of order $k=1,2,\dots $ are defined as multiple Wiener–Itô integrals
(1)
\[{Z_{H}^{k}}(t):={\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\int _{0}^{t}}\Bigg(\prod \limits_{i=1}^{k}{(s-y_{i})_{+}^{d-1}}\Bigg)\hspace{0.1667em}ds\hspace{0.1667em}B(dy_{1})\dots B(dy_{k}),\]
where $d=\frac{1}{2}-\frac{1-H}{k}\in (\frac{1}{2}-\frac{1}{2k},\frac{1}{2})$ and $\frac{1}{2}<H<1$ (the prime ${^{\prime }}$ on the integral sign shows that one does not integrate on the diagonals $x_{i}=x_{j}$, $i\ne j$). They are self-similar processes with stationary increments (see [8, 26]).
In this paper, we introduce a new class of stochastic processes, which we call tempered Hermite processes. Tempered Hermite processes modify the kernel of ${Z_{H}^{k}}$ by multiplying an exponential tempering factor $\lambda >0$ such that they are well defined for Hurst parameter $H>\frac{1}{2}$. Tempered Hermite processes are not self-similar processes, but they have a scaling property, involving both the time scale and the tempering parameter. The scaling property enable us to show that the tempered Hermite processes are the weak convergence limits of certain discrete chaos processes.
The paper is organized as follows. In Section 2, we define tempered Hermite processes and derive some their basic properties. In Section 3, we present our main result on the weak convergence to tempered Hermite processes.

2 Tempered Hermite process

Let $B=\{B(t),t\in \mathbb{R}\}$ be a real-valued Brownian motion on the real line, a process with stationary independent increments such that $B(t)$ has a Gaussian distribution with mean zero and variance $|t|$ for all $t\in \mathbb{R}$. Then the Wiener–Itô integrals
\[I_{k}(f):={\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}f(x_{1},\dots ,x_{k})B(dx_{1})\dots B(dx_{k})\]
are defined for all functions $f\in {L}^{2}({\mathbb{R}}^{k})$. The prime ′ on the integral sign shows that one does not integrate on the diagonals $x_{i}=x_{j}$, $i\ne j$. See, for example, [12, Chapter 4].
Definition 1.
Let $H>\frac{1}{2}$ and $\lambda >0$. The process
(2)
\[{Z_{H,\lambda }^{k}}(t):={\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\int _{0}^{t}}\prod \limits_{i=1}^{k}\big({(s-y_{i})_{+}^{d-1}}{e}^{-\lambda (s-y_{i})_{+}}\big)\hspace{0.1667em}ds\hspace{0.1667em}B(dy_{1})\dots B(dy_{k}),\]
where $(x)_{+}=xI(x>0)$ and $d=\frac{1}{2}-\frac{1-H}{k}\in (\frac{1}{2}-\frac{1}{2k},\infty )$, is called a tempered Hermite process of order k.
The next lemma shows that ${Z_{H,\lambda }^{k}}(t)$, given by (2), is well defined for any $t\ge 0$.
Lemma 1.
The function
(3)
\[h_{t}(y_{1},\dots ,y_{k}):={\int _{0}^{t}}\prod \limits_{i=1}^{k}{(s-y_{i})_{+}^{d-1}}{e}^{-\lambda (s-y_{i})_{+}}\hspace{0.1667em}ds\]
is well defined in ${L}^{2}({\mathbb{R}}^{k})$ for any $H>\frac{1}{2}$ and $\lambda >0$.
Proof.
To show that $h_{t}(y_{1},\dots ,y_{k})$ is in ${L}^{2}({\mathbb{R}}^{k})$, we write
(4)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \int _{{\mathbb{R}}^{k}}h_{t}{(y_{1},\dots ,y_{k})}^{2}\hspace{0.1667em}dy_{1}\dots dy_{k}\\{} & \displaystyle \hspace{1em}=\int _{{\mathbb{R}}^{k}}\Bigg[{\int _{0}^{t}}{\int _{0}^{t}}\prod \limits_{i=1}^{k}{(s_{1}-y_{i})_{+}^{d-1}}{e}^{-\lambda (s_{1}-y_{i})_{+}}{(s_{2}-y_{i})_{+}^{d-1}}\\{} & \displaystyle \hspace{2em}\times {e}^{-\lambda (s_{2}-y_{i})_{+}}\hspace{0.1667em}ds_{1}\hspace{0.1667em}ds_{2}\Bigg]\hspace{0.1667em}dy_{1}\dots dy_{k}\\{} & \displaystyle \hspace{1em}=2{\int _{0}^{t}}ds_{1}{\int _{s_{1}}^{t}}ds_{2}\Bigg[\int _{{\mathbb{R}}^{k}}\prod \limits_{i=1}^{k}{(s_{1}-y_{i})_{+}^{d-1}}{e}^{-\lambda (s_{1}-y_{i})_{+}}{(s_{2}-y_{i})_{+}^{d-1}}\\{} & \displaystyle \hspace{2em}\times {e}^{-\lambda (s_{2}-y_{i})_{+}}\hspace{0.1667em}dy_{1}\dots dy_{k}\Bigg]\\{} & \displaystyle \hspace{1em}=2{\int _{0}^{t}}ds{\int _{0}^{t-s}}du\hspace{0.1667em}\Bigg[\int _{{\mathbb{R}_{+}^{k}}}\prod \limits_{i=1}^{k}{w_{i}^{d-1}}{e}^{-\lambda w_{i}}{(w_{i}+u)}^{d-1}{e}^{-\lambda (w_{i}+u)}\hspace{0.1667em}dw_{1}\dots dw_{k}\Bigg]\\{} & \displaystyle \hspace{2em}(s=s_{1},u=s_{2}-s_{1},w_{i}=s_{1}-y_{i})\\{} & \displaystyle \hspace{1em}=2{\int _{0}^{t}}ds{\int _{0}^{t-s}}{e}^{-\lambda uk}\hspace{0.1667em}du\hspace{0.1667em}{\bigg[\int _{\mathbb{R}_{+}}{w}^{d-1}{(w+u)}^{d-1}{e}^{-2\lambda w}\hspace{0.1667em}dw\bigg]}^{k}\\{} & \displaystyle \hspace{1em}=2{\int _{0}^{t}}ds{\int _{0}^{t-s}}{e}^{-\lambda uk}{u}^{k(2d-1)}\hspace{0.1667em}du\hspace{0.1667em}{\bigg[\int _{\mathbb{R}_{+}}{x}^{d-1}{(x+1)}^{d-1}{e}^{-2\lambda ux}\hspace{0.1667em}dx\bigg]}^{k}\\{} & \displaystyle \hspace{1em}=2{\int _{0}^{t}}ds{\int _{0}^{t-s}}{e}^{-\lambda uk}{u}^{k(2d-1)}\hspace{0.1667em}du{\bigg[\frac{\varGamma (d)}{\sqrt{\pi }}{\bigg(\frac{1}{2\lambda u}\bigg)}^{d-\frac{1}{2}}{e}^{\lambda u}K_{\frac{1}{2}-d}(\lambda u)\bigg]}^{k}\\{} & \displaystyle \hspace{1em}=2{\bigg[\frac{\varGamma (d)}{\sqrt{\pi }{(2\lambda )}^{d-\frac{1}{2}}}\bigg]}^{k}{\int _{0}^{t}}ds{\int _{0}^{t-s}}{\big[{u}^{d-\frac{1}{2}}K_{\frac{1}{2}-d}(\lambda u)\big]}^{k}\hspace{0.1667em}du\\{} & \displaystyle \hspace{1em}=2{\bigg[\frac{\varGamma (d)}{\sqrt{\pi }{2}^{d-\frac{1}{2}}{\lambda }^{2d-1}}\bigg]}^{k}{\int _{0}^{t}}ds{\int _{0}^{\lambda (t-s)}}{\big[{z}^{d-\frac{1}{2}}K_{\frac{1}{2}-d}(z)\big]}^{k}\hspace{0.1667em}dz,\end{array}\]
where we applied the standard integral formula [13, p. 344]
(5)
\[{\int _{0}^{\infty }}{x}^{\nu -1}{(x+\beta )}^{\nu -1}{e}^{-\mu x}\hspace{0.1667em}dx=\frac{1}{\sqrt{\pi }}{\bigg(\frac{\beta }{\mu }\bigg)}^{\nu -\frac{1}{2}}{e}^{\frac{\beta \mu }{2}}\varGamma (\nu )K_{\frac{1}{2}-\nu }\bigg(\frac{\beta \mu }{2}\bigg)\]
for $|\arg \beta |<\pi $, Re $\mu >0$, Re $\nu >0$. Here $K_{\nu }(x)$ is the modified Bessel function of the second kind (see [1, Chapter 9]). Next, we need to show that
\[{\int _{0}^{t}}ds{\int _{0}^{\lambda (t-s)}}{\big[{z}^{d-\frac{1}{2}}K_{\frac{1}{2}-d}(z)\big]}^{k}\hspace{0.1667em}dz\]
is finite for $d>\frac{1}{2}-\frac{1}{2k}$ (equivalently, for $H>\frac{1}{2}$). First, suppose $\frac{1}{2}-\frac{1}{2k}<d<\frac{1}{2}$ (or $\frac{1}{2}<H<1$). Since $k_{\nu }(z)<{z}^{-\nu }{2}^{\nu -1}\varGamma (\nu )$ for $z>0$ (Theorem 3.1 in [11]), we have
(6)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{t}}ds{\int _{0}^{\lambda (t-s)}}{\big[{z}^{d-\frac{1}{2}}K_{\frac{1}{2}-d}(z)\big]}^{k}\hspace{0.1667em}dz\\{} & \displaystyle \hspace{1em}\le {\bigg[{2}^{-(\frac{1}{2}+d)}\varGamma \bigg(\frac{1}{2}-d\bigg)\bigg]}^{k}{\int _{0}^{t}}ds{\int _{0}^{\lambda (t-s)}}{z}^{k(2d-1)}\hspace{0.1667em}dz\\{} & \displaystyle \hspace{1em}=\frac{{[{\lambda }^{2d-1}{2}^{-(\frac{1}{2}+d)}\varGamma (\frac{1}{2}-d)]}^{k}\lambda }{(k(2d-1)+1)(k(2d-1)+2)}{t}^{2kd-k+2},\end{array}\]
which is finite, and, consequently, from (4) and (6) we get
\[\int _{{\mathbb{R}}^{k}}h_{t}{(y_{1},\dots ,y_{k})}^{2}\hspace{0.1667em}dy_{1}\dots dy_{k}<\frac{2\lambda {[\frac{\varGamma (d)\varGamma (\frac{1}{2}-d)}{\sqrt{\pi }{2}^{2d}}]}^{k}}{(k(2d-1)+1)(k(2d-1)+2)}{t}^{2kd-k+2}\]
for $\frac{1}{2}-\frac{1}{2k}<d<\frac{1}{2}$. Next, suppose $d>\frac{1}{2}$ (equivalently $H>1$). In this case,
(7)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{t}}ds{\int _{0}^{\lambda (t-s)}}{\big[{z}^{d-\frac{1}{2}}K_{\frac{1}{2}-d}(z)\big]}^{k}\hspace{0.1667em}dz={\int _{0}^{t}}ds{\int _{0}^{\lambda (t-s)}}{\big[{z}^{d-\frac{1}{2}}K_{d-\frac{1}{2}}(z)\big]}^{k}\hspace{0.1667em}dz\\{} & \displaystyle \hspace{1em}\le {\int _{0}^{t}}ds{\int _{0}^{\lambda (t-s)}}{\bigg[{2}^{d-\frac{3}{2}}\varGamma \bigg(d-\frac{1}{2}\bigg)\bigg]}^{k}\hspace{0.1667em}dz\le \frac{\lambda {[{2}^{d-\frac{3}{2}}\varGamma (d-\frac{1}{2})]}^{k}}{2}{t}^{2},\end{array}\]
where we applied the fact that $K_{\nu }(z)=K_{-\nu }(z)$ and $k_{\nu }(z)<{z}^{-\nu }{2}^{\nu -1}\varGamma (\nu )$ for $z>0$. Hence, from (4) and (7) it follows that
\[\int _{{\mathbb{R}}^{k}}h_{t}{(y_{1},\dots ,y_{k})}^{2}\hspace{0.1667em}dy_{1}\dots dy_{k}<{\bigg[\frac{\varGamma (d)\varGamma (d-\frac{1}{2})}{2\sqrt{\pi }{\lambda }^{2d-1}}\bigg]}^{k}\lambda \hspace{0.1667em}{t}^{2}\]
for $d>\frac{1}{2}$. Finally, let $d=\frac{1}{2}$ (equivalently, $H=1$). Consider
(8)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {\int _{0}^{\lambda (t-s)}}{\big(K_{0}(z)\big)}^{k}\hspace{0.1667em}dz& \displaystyle ={\int _{0}^{\eta }}{\big(K_{0}(z)\big)}^{k}\hspace{0.1667em}dz+{\int _{\eta }^{\lambda (t-s)}}{\big(K_{0}(z)\big)}^{k}\hspace{0.1667em}dz\\{} & \displaystyle :=I_{1}+I_{2}.\end{array}\]
Since $K_{0}(z)\sim -\log (z)$ as $z\to 0$ (see [1, Eq. 9.6.8], we have
(9)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle I_{1}& \displaystyle ={\int _{0}^{\eta }}{\bigg(\frac{K_{0}(z)}{\log (z)}\log (z)\bigg)}^{k}\hspace{0.1667em}dz\le {(1+\epsilon )}^{k}{\int _{0}^{\eta }}{\big(-\log (z)\big)}^{k}\hspace{0.1667em}dz\\{} & \displaystyle ={(1+\epsilon )}^{k}{\int _{-\log (\eta )}^{+\infty }}{w}^{k}{e}^{-w}\hspace{0.1667em}dz\le {(1+\epsilon )}^{k}{\int _{0}^{+\infty }}{w}^{k}{e}^{-w}\hspace{0.1667em}dz\\{} & \displaystyle ={(1+\epsilon )}^{k}\varGamma (k+1).\end{array}\]
Now, we find an upper bound for $I_{2}$. It can be shown that $\frac{K_{\nu }(x)}{K_{\nu }(y)}>{e}^{y-x}$ for $0<x<y$ and an arbitrary real number ν (see [4]). Therefore,
(10)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle I_{2}& \displaystyle ={\int _{\eta }^{\lambda (t-s)}}{\big(K_{0}(z)\big)}^{k}\hspace{0.1667em}dz<{\int _{\eta }^{\lambda (t-s)}}{\big(K_{0}(\eta ){e}^{\eta -z}\big)}^{k}\hspace{0.1667em}dz\hspace{0.1667em}{\big[K_{0}(\eta ){e}^{\eta }\big]}^{k}\big(\lambda (t-s)-\eta \big).\end{array}\]
From (8), (9), and (10) we can see that
\[{\int _{0}^{\lambda (t-s)}}{\big(K_{0}(z)\big)}^{k}\hspace{0.1667em}dz<{(1+\epsilon )}^{k}\varGamma (k+1)+{\big[K_{0}(\eta ){e}^{\eta }\big]}^{k}\big(\lambda (t-s)-\eta \big)\]
and hence
(11)
\[{\int _{0}^{t}}ds{\int _{0}^{\lambda (t-s)}}{\big[K_{\frac{1}{2}-d}(z)\big]}^{k}\hspace{0.1667em}dz<\big({(1+\epsilon )}^{k}\varGamma (k+1)\big)t\hspace{0.1667em}+\hspace{0.1667em}{\big[K_{0}(\eta ){e}^{\eta }\big]}^{k}\bigg(\frac{\lambda {t}^{2}}{2}-\eta t\bigg)\]
for $\epsilon >0$, and this shows that
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \int _{{\mathbb{R}}^{k}}h_{t}{(y_{1},\dots ,y_{k})}^{2}\hspace{0.1667em}dy_{1}\dots dy_{k}\\{} & \displaystyle \hspace{1em}<2{\bigg[\frac{\varGamma (d)}{\sqrt{\pi }{\lambda }^{2d-1}}{2}^{d-\frac{1}{2}}\bigg]}^{k}\bigg[\big({(1+\epsilon )}^{k}\varGamma (k+1)\big)t+{\big[K_{0}(\eta ){e}^{\eta }\big]}^{k}\bigg(\frac{\lambda {t}^{2}}{2}-\eta t\bigg)\bigg]\end{array}\]
for $d=\frac{1}{2}$ ($H=1$), which completes the proof.  □
The next result shows that although a tempered Hermite process is not a self-similar process, it does have a nice scaling property. Here the symbol ≜ indicates the equivalence of finite-dimensional distributions.
Proposition 1.
The process ${Z_{H,\lambda }^{k}}$ given by (2) has stationary increments such that
(12)
\[\big\{{Z_{H,\lambda }^{k}}(ct)\big\}_{t\in \mathbb{R}}\triangleq \big\{{c}^{H}{Z_{H,c\lambda }^{k}}(t)\big\}_{t\in \mathbb{R}}\]
for any scale factor $c>0$.
Proof.
Since $B(dy)$ has the control measure $m(dy)={\sigma }^{2}\hspace{0.1667em}dy$, the random measure $B(c\hspace{0.1667em}dy)$ has the control measure ${c}^{1/2}{\sigma }^{2}\hspace{0.1667em}dy$. Given $t_{j}$, $j=1,\dots ,n$, by the change of variables $s=c{s^{\prime }}$ and $y_{i}=c{y^{\prime }_{i}}$ for $i=1\dots ,k$ we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {Z_{H,\lambda }^{k}}(ct_{j})& \displaystyle \hspace{0.1667em}=\hspace{0.1667em}\int _{{\mathbb{R}}^{k}}\hspace{-0.1667em}{\int _{0}^{ct_{j}}}\Bigg(\prod \limits_{i=1}^{k}{(s\hspace{0.1667em}-\hspace{0.1667em}y_{i})_{+}^{-(\frac{1}{2}+\frac{1-H}{k})}}{e}^{-\lambda (s-y_{i})_{+}}\Bigg)\hspace{0.1667em}ds\hspace{0.1667em}B(dy_{1})\dots B(dy_{k})\\{} & \displaystyle \hspace{0.1667em}=\hspace{0.1667em}\int _{{\mathbb{R}}^{k}}\hspace{-0.1667em}{\int _{0}^{t_{j}}}\Bigg(\prod \limits_{i=1}^{k}{\big(c{s^{\prime }}-\hspace{0.1667em}c{y_{i}^{{^{\prime }}}}\big)_{+}^{-(\frac{1}{2}+\frac{1-H}{k})}}{e}^{-\lambda (c{s^{\prime }}-c{y_{i}^{{^{\prime }}}})_{+}}\hspace{-0.1667em}\Bigg)c\hspace{0.1667em}d{s^{\prime }}\hspace{0.1667em}B\big(cd{y^{\prime }_{1}}\big)\dots B\big(cd{y^{\prime }_{k}}\big)\\{} & \displaystyle \hspace{0.1667em}\triangleq \hspace{0.1667em}{c}^{H}\int _{\mathbb{R}}\hspace{-0.1667em}{\int _{0}^{t_{j}}}\big({\big({s^{\prime }}\hspace{0.1667em}-\hspace{0.1667em}{y^{\prime }}\big)_{+}^{-(\frac{1}{2}+\frac{1-H}{k})}}{e}^{-\lambda c({s^{\prime }}-{y^{\prime }})_{+}}\big)\hspace{0.1667em}d{s^{\prime }}\hspace{0.1667em}B\big(d{y^{\prime }_{1}}\big)\dots B\big(d{y^{\prime }_{k}}\big)\\{} & \displaystyle \hspace{0.1667em}=\hspace{0.1667em}{c}^{H}{Z_{H,c\lambda }^{k}}(t_{j}),\end{array}\]
so that (12) holds. Suppose now that $s_{j}<t_{j}$ and change the variables $x={x^{\prime }}+s_{j}$, $y_{i}=s_{j}+{y^{\prime }_{i}}$ (for $j=1,\dots ,n$) to get
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \big({Z_{H,\lambda }^{k}}(t_{j})-{Z_{H,\lambda }^{k}}(s_{j})\big)\\{} & \displaystyle \hspace{1em}=\int _{{\mathbb{R}}^{k}}{\int _{s_{j}}^{t_{j}}}\Bigg(\prod \limits_{i=1}^{k}{(x-y_{i})_{+}^{-(\frac{1}{2}+\frac{1-H}{k})}}{e}^{-\lambda (x-y_{i})_{+}}\Bigg)\hspace{0.1667em}dx\hspace{0.1667em}B(dy_{1})\dots B(dy_{k})\\{} & \displaystyle \hspace{1em}=\int _{{\mathbb{R}}^{k}}{\int _{0}^{t_{j}-s_{j}}}\Bigg(\prod \limits_{i=1}^{k}{\big({x^{\prime }}+s_{j}-y_{i}\big)_{+}^{-(\frac{1}{2}+\frac{1-H}{k})}}{e}^{-\lambda ({x^{\prime }}+s_{j}-y_{i})_{+}}\Bigg)\hspace{0.1667em}d{x^{\prime }}\hspace{0.1667em}B(dy_{1})\dots B(dy_{k})\\{} & \displaystyle \hspace{1em}\triangleq \int _{{\mathbb{R}}^{k}}{\int _{0}^{t_{j}-s_{j}}}\Bigg(\prod \limits_{i=1}^{k}{\big({x^{\prime }_{i}}-{y^{\prime }_{i}}\big)_{+}^{-(\frac{1}{2}+\frac{1-H}{k})}}{e}^{-\lambda ({x^{\prime }_{i}}-{y^{\prime }_{i}})_{+}}\Bigg)\hspace{0.1667em}d{x^{\prime }}\hspace{0.1667em}B\big(d{y^{\prime }_{1}}\big)\dots B\big(d{y^{\prime }_{k}}\big)\\{} & \displaystyle \hspace{1em}={Z_{H,\lambda }^{k}}(t_{j}-s_{j}),\end{array}\]
which shows that a tempered Hermite process of order k has stationary increments.  □
As a consequence of Lemma 1 and Proposition 1, we get the following:
Proposition 2.
The stochastic process ${Z_{H,\lambda }^{k}}(t)$ has a continuous version.
Proof.
According to the proof of Lemma 1,
(13)
\[\mathbb{E}{\big|{Z_{H,\lambda }^{k}}(t)-{Z_{H,\lambda }^{k}}(s)\big|}^{2}\le \left\{\begin{array}{l@{\hskip10.0pt}l}c_{1}|t-s{|}^{2H}\hspace{1em}& \frac{1}{2}<H<1,\\{} c_{2}|t-s{|}^{2}\hspace{1em}& H>1,\end{array}\right.\]
where $c_{1}$ and $c_{2}$ are some constants. Kolmogorov’s continuity criterion states that a stochastic process $X(t)$ has a continuous version if there exist some positive constants p, β, and c such that
(14)
\[\mathbb{E}{\big|X(t)-X(s)\big|}^{p}\le c|t-s{|}^{1+\beta }.\]
Apply (14) for tempered Hermite process ${Z_{H,\lambda }^{k}}(t)$ by taking $p=1$, $\beta =\min \{1,2H-1\}$, and $c=\min \{c_{1},c_{2}\}$ to get the desired result.  □
We next compute the covariance function of ${Z_{H,\lambda }^{k}}(t)$. Unlike Hermite processes, the covariance function of a tempered Hermite process is different for different $k\ge 1$.
Proposition 3.
The process ${Z_{H,\lambda }^{k}}$ given by (2) has the covariance function
\[R(t,s)=2{\bigg[\frac{\varGamma (d)}{\sqrt{\pi }{(2\lambda )}^{d-\frac{1}{2}}}\bigg]}^{k}{\int _{0}^{t}}{\int _{0}^{s}}{\big[|u-v{|}^{d-\frac{1}{2}}K_{\frac{1}{2}-d}\big(\lambda |u-v|\big)\big]}^{k}\hspace{0.1667em}dv\hspace{0.1667em}du\]
for $\lambda >0$ and $d>\frac{1}{2}-\frac{1}{2k}$ (equivalently, $H>\frac{1}{2}$).
Proof.
By applying the Fubini theorem and the isometry of multiple Wiener–Itô integrals we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle R(t,s)& \displaystyle =2\int _{{\mathbb{R}}^{k}}\Bigg({\int _{0}^{t}}{\int _{0}^{s}}\prod \limits_{i=1}^{k}{(u-y_{i})_{+}^{d-1}}{(v-y_{i})_{+}^{d-1}}\\{} & \displaystyle \hspace{1em}\times {e}^{-\lambda (u-y_{i})_{+}}{e}^{-\lambda (v-y_{i})_{+}}\hspace{0.1667em}dv\hspace{0.1667em}du\Bigg)\hspace{0.1667em}dy_{1}\dots dy_{k}\\{} & \displaystyle =2{\int _{0}^{t}}{\int _{0}^{s}}\int _{{\mathbb{R}}^{k}}\Bigg[\prod \limits_{i=1}^{k}{(u-y_{i})_{+}^{d-1}}{(v-y_{i})_{+}^{d-1}}\\{} & \displaystyle \hspace{1em}\times {e}^{-\lambda (u-y_{i})_{+}}{e}^{-\lambda (v-y_{i})_{+}}\hspace{0.1667em}dy_{1}\dots dy_{k}\Bigg]\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle =2{\int _{0}^{t}}{\int _{0}^{s}}{\bigg[\int _{\mathbb{R}}{(u-y)_{+}^{d-1}}{(v-y)_{+}^{d-1}}{e}^{-\lambda (u-y)_{+}}{e}^{-\lambda (v-y)_{+}}\hspace{0.1667em}dy\bigg]}^{k}\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle =2{\int _{0}^{t}}{\int _{0}^{s}}{\Bigg[{\int _{-\infty }^{\min (u,v)}}{(u-y)}^{d-1}{(v-y)}^{d-1}{e}^{-\lambda (u-y)}{e}^{-\lambda (v-y)}\hspace{0.1667em}dy\Bigg]}^{k}\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle =2{\int _{0}^{t}}{\int _{0}^{s}}{\Bigg[{\int _{0}^{+\infty }}{w}^{d-1}{\big(|u-v|+w\big)}^{d-1}{e}^{-\lambda w}{e}^{-\lambda (|u-v|+w)}\hspace{0.1667em}dw\Bigg]}^{k}\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle =2{\int _{0}^{t}}{\int _{0}^{s}}{e}^{-\lambda k|u-v|}\hspace{0.1667em}|u-v{|}^{k(2d-1)}\\{} & \displaystyle \hspace{1em}\times {\Bigg[{\int _{0}^{+\infty }}{x}^{-(\frac{1}{2}+\frac{1-H}{k})}{(x+1)}^{-(\frac{1}{2}+\frac{1-H}{k})}{e}^{-2\lambda |u-v|x}\hspace{0.1667em}dx\Bigg]}^{k}\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle =2{\int _{0}^{t}}{\int _{0}^{s}}{e}^{-\lambda k|u-v|}\hspace{0.1667em}|u-v{|}^{k(2d-1)}\\{} & \displaystyle \hspace{1em}\times {\bigg[\frac{\varGamma (d)}{\sqrt{\pi }}{\bigg(\frac{1}{2\lambda |u-v|}\bigg)}^{d-\frac{1}{2}}{e}^{\lambda |u-v|}K_{\frac{1}{2}-d}\big(\lambda |u-v|\big)\bigg]}^{k}\hspace{0.1667em}dv\hspace{0.1667em}du\\{} & \displaystyle =2{\bigg[\frac{\varGamma (d)}{\sqrt{\pi }{(2\lambda )}^{d-\frac{1}{2}}}\bigg]}^{k}{\int _{0}^{t}}{\int _{0}^{s}}{\big[|u-v{|}^{d-\frac{1}{2}}K_{\frac{1}{2}-d}\big(\lambda |u-v|\big)\big]}^{k}\hspace{0.1667em}dv\hspace{0.1667em}du\end{array}\]
for any $H>\frac{1}{2}$ and $\lambda >0$, and hence we get the desired result.  □
Let $\widehat{B}_{1}$ and $\widehat{B}_{2}$ be independent Gaussian random measures with $\widehat{B}_{1}(A)=\widehat{B}_{1}(-A)$, $\widehat{B}_{2}(A)=-\widehat{B}_{2}(-A)$, and $\mathbb{E}[{(\widehat{B}_{i}(A))}^{2}]=m(A)/2$, where $m(dx)={\sigma }^{2}\hspace{0.1667em}dx$, and define the complex-valued Gaussian random measure $\widehat{B}=\widehat{B}_{1}+i\widehat{B}_{2}$.
Proposition 4.
Let $H>\frac{1}{2}$ and $\lambda >0$. The process ${Z_{H,\lambda }^{k}}$ given by (2) has the spectral domain representation
(15)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {Z_{H,\lambda }^{k}}(t)& \displaystyle =C_{H,k}{\int _{{\mathbb{R}}^{k}}^{{^{\prime\prime }}}}\frac{{e}^{it(\omega _{1}+\cdots +\omega _{k})}-1}{i(\omega _{1}+\cdots +\omega _{k})}\\{} & \displaystyle \hspace{1em}\times \prod \limits_{j=1}^{k}{(\lambda +i\omega _{j})}^{-(\frac{1}{2}-\frac{1-H}{k})}\widehat{B}(d\omega _{1})\dots \widehat{B}(d\omega _{k}),\end{array}\]
where $\widehat{B}(\cdot )$ is a complex-valued Gaussian random measure, and $C_{H,k}={(\frac{\varGamma (\frac{1}{2}-\frac{1-H}{k})}{\sqrt{2\pi }})}^{k}$ is a constant depending on H and k. The double prime ${^{\prime\prime }}$ on the integral indicates that one does not integrate on the diagonals $\omega _{i}=\omega _{j}$, $i\ne j$.
Proof.
We first observe that
(16)
\[h_{t}(y_{1},\dots ,y_{k})={\int _{0}^{t}}\prod \limits_{j=1}^{k}{(s-y_{j})_{+}^{d-1}}{e}^{-\lambda (s-y_{j})_{+}}\hspace{0.1667em}ds\]
has the Fourier transform
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \widehat{h_{t}}(\omega _{1},\dots ,\omega _{k})\\{} & \displaystyle \hspace{1em}=\frac{1}{{(2\pi )}^{\frac{k}{2}}}\int _{{\mathbb{R}}^{k}}{e}^{i{\textstyle\sum _{j=1}^{k}}\omega _{j}y_{j}}{\int _{0}^{t}}\prod \limits_{j=1}^{k}{(s-y_{j})_{+}^{d-1}}{e}^{-\lambda (s-y_{j})_{+}}\hspace{0.1667em}ds\hspace{0.1667em}dy_{1}\dots dy_{k}\\{} & \displaystyle \hspace{1em}=\frac{1}{{(2\pi )}^{\frac{k}{2}}}\int _{{\mathbb{R}}^{k}}{\int _{0}^{t}}{e}^{i{\textstyle\sum _{j=1}^{k}}\omega _{j}(s-u_{j})}\prod \limits_{j=1}^{k}{(u_{j})_{+}^{d-1}}{e}^{-\lambda (u_{j})_{+}}\hspace{0.1667em}ds\hspace{0.1667em}du_{1}\dots du_{k}\\{} & \displaystyle \hspace{1em}=\frac{1}{{(2\pi )}^{\frac{k}{2}}}{\int _{0}^{t}}\int _{{\mathbb{R}}^{k}}{e}^{is{\textstyle\sum _{j=1}^{k}}\omega _{j}}\prod \limits_{j=1}^{k}{(u_{j})_{+}^{d-1}}{e}^{-(\lambda +i\omega _{j})u_{j}}\hspace{0.1667em}du_{1}\dots du_{k}\hspace{0.1667em}ds\\{} & \displaystyle \hspace{1em}={\bigg[\frac{\varGamma (d)}{\sqrt{2\pi }}\bigg]}^{k}\frac{{e}^{it(\omega _{1}+\cdots +\omega _{k})}-1}{i(\omega _{1}+\cdots +\omega _{k})}\prod \limits_{j=1}^{k}{(\lambda +i\omega _{j})}^{-d}\\{} & \displaystyle \hspace{1em}={\bigg[\frac{\varGamma (\frac{1}{2}-\frac{1-H}{k})}{\sqrt{2\pi }}\bigg]}^{k}\frac{{e}^{it(\omega _{1}+\cdots +\omega _{k})}-1}{i(\omega _{1}+\cdots +\omega _{k})}\prod \limits_{j=1}^{k}{(\lambda +i\omega _{j})}^{-(\frac{1}{2}-\frac{1-H}{k})},\end{array}\]
using the well-known formula for the characteristic function of the gamma density. Then (2), together with Proposition 9.3.1 in [21], implies that
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {Z_{H,\lambda }^{k}}(t)& \displaystyle ={\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}h_{t}(y_{1},\dots ,y_{k})B(dy_{1})\dots B(dy_{k})\\{} & \displaystyle \triangleq {\int _{{\mathbb{R}}^{k}}^{{^{\prime\prime }}}}\widehat{h_{t}}(\omega _{1},\dots ,\omega _{k})\widehat{B}(d\omega _{1})\dots \widehat{B}(d\omega _{k})\\{} & \displaystyle =C_{H,k}{\int _{{\mathbb{R}}^{k}}^{{^{\prime\prime }}}}\frac{{e}^{it(\omega _{1}+\cdots +\omega _{k})}-1}{i(\omega _{1}+\cdots +\omega _{k})}\prod \limits_{j=1}^{k}{(\lambda +i\omega _{j})}^{-(\frac{1}{2}-\frac{1-H}{k})}\widehat{B}(d\omega _{1})\dots \widehat{B}(d\omega _{k}),\end{array}\]
which is equivalent to (15).  □

3 Limit theorem

In this section, we show that the process ${Z_{H,\lambda }^{k}}(t)$ is the weak convergence limit of a certain discrete chaos process. Our approach follows the seminal work of Bai and Taqqu [3]. When $k=1$ and $\lambda >0$, the discrete process ${Y}^{\lambda ,k}(n)$, (18), is a time series that is useful to model turbulence [20, 24]. When $k=1$ and $\lambda =0$, Davydov [7] (see also Giraitis et al. [12, p. 276] and Whitt [27, Theorem 4.6.1]) established the corresponding invariance principle for ${Y}^{\lambda ,k}(n)$, where the limit involves a fractional Brownian motion. When $k>1$ and $\lambda =0$, Taqqu [26] showed that the weak convergence limit of ${Y}^{\lambda ,k}(n)$ is the Hermite process (1).
The following proposition gives a powerful tool for proving the result of this section.
Proposition 5.
Let
(17)
\[Q_{k}(g_{N}):=\sum \limits_{(j_{1},\dots ,j_{k})\in {\mathbb{Z}}^{k}}^{{^{\prime }}}g_{N}(j_{1},\dots ,j_{k})\varepsilon _{j_{1}}\dots \varepsilon _{j_{k}}\]
for $N=1,2,\dots $, where $g_{N}\in {L}^{2}({\mathbb{Z}}^{k})$ for $k\ge 1$, and $\{\varepsilon _{n}\}$ is an i.i.d. sequence with mean zero and variance 1. Assume that, for some $f\in {L}^{2}({\mathbb{R}}^{k})$,
\[\int _{{\mathbb{R}}^{k}}{\big|\tilde{g}_{N}(u_{1},\dots ,u_{k})-f(u_{1},\dots ,u_{k})\big|}^{2}\hspace{0.1667em}du_{1}\dots du_{k}\to 0,\hspace{1em}\textit{as }N\to \infty ,\]
where
\[\tilde{g}_{N}(u_{1},\dots ,u_{k}):={N}^{\frac{k}{2}}g_{N}\big([u_{1}N]+c_{1},\dots ,[u_{k}N]+c_{k}\big),\hspace{1em}(c_{1},\dots ,c_{k})\in {\mathbb{Z}}^{k}.\]
Then
\[Q_{k}(g_{N})\stackrel{f.d.d.}{\longrightarrow }\int _{{\mathbb{R}}^{k}}f(u_{1},\dots ,u_{k})B(du_{1})\dots B(du_{k})\]
as $N\to \infty $.
Proof.
See Proposition 4.1 in [3] and also Corollary 4.7.1 in [12].  □
Define the discrete chaos process
(18)
\[{Y}^{\lambda ,k}(n):=\sum \limits_{(i_{1},i_{2},\dots ,i_{k})\in {\mathbb{Z}}^{k}}^{{^{\prime }}}{C}^{\lambda }(i_{1},i_{2},\dots ,i_{k})\varepsilon _{n-i_{1}}\dots \varepsilon _{n-i_{k}},\]
where the prime ${^{\prime }}$ indicates exclusion of the diagonals $i_{p}=i_{q}$, $p\ne q$, $\{\varepsilon _{n}\}$ is as before, and
(19)
\[{C}^{\lambda }(i_{1},i_{2},\dots ,i_{k})=\prod \limits_{j=1}^{k}{(i_{j})_{+}^{d-1}}{e}^{-\lambda (i_{j})_{+}}\]
for $d\in (\frac{1}{2}-\frac{1}{2k},\infty )$ and $\lambda >0$. Now, consider
\[{S_{N}^{\lambda }}(t)=\sum \limits_{n=1}^{[Nt]}{Y}^{\lambda ,k}(n),\hspace{1em}0\le t\le 1.\]
Theorem 1.
Let ${Y}^{\lambda ,k}(n)$ be the discrete chaos process given by (18). Then
(20)
\[\frac{1}{{N}^{H}}{S_{N}^{\frac{\lambda }{N}}}(t)\Rightarrow {Z_{H,\lambda }^{k}}(t),\]
where ⇒ means weak convergence in the Skorokhod space $D[0,1]$ with uniform metric, ${Z_{H,\lambda }^{k}}(t)$ is the tempered Hermite process in (2), and $H=1+kd-\frac{k}{2}$.
Remark 1.
The Lamperti’s theorem [15] states that if
\[\frac{1}{d(N)}\sum \limits_{k=1}^{[Nt]}Y_{k}\stackrel{f.d.d.}{\longrightarrow }Z(t)\]
and $d(N)\to \infty $ as $N\to \infty $, where $\{Y_{k}\}$ is stationary, then $\{Z(t)\}_{t\ge 0}$ is self-similar with stationary increments ($\stackrel{f.d.d.}{\longrightarrow }$ means the convergence of finite-dimensional distributions). In our case, since the stationary processes $\{{Y_{k}^{\frac{\lambda }{N}}}\}$ depend on N through the parameter λ, the limit process $\{{Z_{H,\lambda }^{k}}(t)\}_{t\ge 0}$ need not be a self-similar process. Therefore, the result of Theorem 1 does not contradict the Lamperti theorem.
Proof of Theorem 1.
First, we show that
(21)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \frac{1}{{N}^{H}}{S_{N}^{\frac{\lambda }{N}}}(t)& \displaystyle =\frac{1}{{N}^{H}}\sum \limits_{n=1}^{[Nt]}{Y}^{\frac{\lambda }{N},k}(n)\\{} & \displaystyle =\sum \limits_{(i_{1},\dots ,i_{k})\in {\mathbb{Z}}^{k}}\frac{1}{{N}^{H}}\sum \limits_{n=1}^{[Nt]}{C}^{\frac{\lambda }{N}}(n-i_{1},\dots ,n-i_{k})\varepsilon _{i_{1}}\dots \varepsilon _{i_{k}}\\{} & \displaystyle =Q_{k}(h_{t,N})\stackrel{f.d.d.}{\longrightarrow }{Z_{H,\lambda }^{k}}(t)\hspace{1em}\text{as}\hspace{2.5pt}N\to \infty ,\end{array}\]
where
\[h_{t,N}(i_{1},\dots ,i_{k}):=\frac{1}{{N}^{H}}\sum \limits_{n=1}^{[Nt]}{C}^{\frac{\lambda }{N}}(n-i_{1},\dots ,n-i_{k}),\]
and $Q_{k}(\cdot )$ is defined by (17). In order to show (21), we just need to check that
(22)
\[\big\| \tilde{h}_{t,N}(y_{1},\dots ,y_{k})-h_{t}(y_{1},\dots ,y_{k})\big\| _{{L}^{2}({\mathbb{R}}^{k})}\to 0\]
as $N\to \infty $, where
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \tilde{h}_{t,N}(y_{1},\dots ,y_{k})& \displaystyle :={N}^{\frac{k}{2}}h_{t,N}\big([Ny_{1}]+1,\dots ,[Ny_{k}]+1\big)\\{} & \displaystyle =\frac{{N}^{\frac{k}{2}}}{{N}^{H}}\sum \limits_{n=1}^{[Nt]}{C}^{\frac{\lambda }{N}}\big(n-[Ny_{1}]-1,\dots ,n-[Ny_{k}]-1\big),\end{array}\]
and $h_{t}(y_{1},\dots ,y_{k})$ is given by (3). Write
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \tilde{h}_{t,N}(y_{1},\dots ,y_{k})& \displaystyle =\frac{{N}^{\frac{k}{2}}}{{N}^{H}}\sum \limits_{n=1}^{[Nt]}{C}^{\frac{\lambda }{N}}\big(n-[Ny_{1}]-1,\dots ,n-[Ny_{k}]-1\big)\\{} & \displaystyle =\frac{1}{{N}^{1+kd-k}}\sum \limits_{n=1}^{[Nt]}\prod \limits_{i=1}^{k}{\big(n-[Ny_{i}]-1\big)_{+}^{d-1}}{e}^{-\frac{\lambda }{N}(n-[Ny_{i}]-1)_{+}}\\{} & \displaystyle =\frac{1}{N}\sum \limits_{n=1}^{[Nt]}\prod \limits_{i=1}^{k}{\bigg(\frac{n-[Ny_{i}]-1}{N}\bigg)_{+}^{d-1}}{e}^{-\lambda (\frac{n-[Ny_{i}]-1}{N})_{+}}\\{} & \displaystyle ={\int _{0}^{t}}\prod \limits_{i=1}^{k}{\bigg(\frac{[Ns]-[Ny_{i}]}{N}\bigg)_{+}^{d-1}}{e}^{-\lambda (\frac{[Ns]-[Ny_{i}]}{N})_{+}}\hspace{0.1667em}ds.\end{array}\]
Let $d=1$. In this case,
\[{\bigg(\frac{[Ns]-[Ny]}{N}\bigg)_{+}^{d-1}}{e}^{-\lambda (\frac{[Ns]-[Ny]}{N})_{+}}={e}^{-\lambda (\frac{[Ns]-[Ny]}{N})_{+}}\le {e}^{-\lambda (s-y)_{+}}{e}^{\frac{\lambda }{N}}\]
for all $N\ge 1$, and hence
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \Bigg|\prod \limits_{i=1}^{k}{e}^{-\lambda (\frac{[Ns]-[Ny_{i}]}{N})_{+}}\Bigg|& \displaystyle \le {e}^{\lambda k}\prod \limits_{i=1}^{k}{e}^{-\lambda (s-y_{i})_{+}}\\{} & \displaystyle =:g_{1}(s-y_{1},\dots ,s-y_{k}).\end{array}\]
Next, consider $0<d<1$. Since $[Ns]-[Ny]>Ns-Ny-1$, we get
\[{\bigg(\frac{[Ns]-[Ny]}{N}\bigg)_{+}^{d-1}}<{\bigg(\frac{Ns-Ny-1}{N}\bigg)_{+}^{d-1}}\le {(s-y-1)_{+}^{d-1}}\]
for all $N\ge 1$, and hence
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \Bigg|\prod \limits_{i=1}^{k}{\bigg(\frac{[Ns]-[Ny_{i}]}{N}\bigg)_{+}^{d-1}}{e}^{-\lambda (\frac{[Ns]-[Ny_{i}]}{N})_{+}}\Bigg|& \displaystyle <\prod \limits_{i=1}^{k}{(s-y_{i}-1)_{+}^{d-1}}{e}^{-\lambda (s-y_{i}-1)_{+}}\\{} & \displaystyle =:g_{2}(s-y_{1},\dots ,s-y_{k}).\end{array}\]
Finally, suppose that $d>1$. Since $[Ns]-[Ny]<Ns-Ny+1$, we get
\[{\bigg(\frac{[Ns]-[Ny]}{N}\bigg)_{+}^{d-1}}<{\bigg(\frac{Ns-Ny+1}{N}\bigg)_{+}^{d-1}}\le {(s-y+1)_{+}^{d-1}}\]
for all $N\ge 1$, and hence
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \Bigg|\prod \limits_{i=1}^{k}{\bigg(\frac{[Ns]-[Ny_{i}]}{N}\bigg)_{+}^{d-1}}{e}^{-\lambda (\frac{[Ns]-[Ny_{i}]}{N})_{+}}\Bigg|& \displaystyle <\prod \limits_{i=1}^{k}{(s-y_{i}+1)_{+}^{d-1}}{e}^{-\lambda (s-y_{i}-1)_{+}}\\{} & \displaystyle =:g_{3}(s-y_{1},\dots ,s-y_{k}).\end{array}\]
By the similar argument of Lemma 1, we can verify that
\[{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg({\int _{0}^{t}}g_{i}(s-y_{1},\dots ,s-y_{k})\hspace{0.1667em}ds\Bigg)}^{2}\hspace{0.1667em}dy_{1},\dots ,dy_{k}<\infty \]
for $i=1,2,3$. On the other hand, since ${C}^{\lambda }(i_{1},\dots ,i_{k})$ is continuous a.e., ${C}^{\lambda }(\frac{[Ns]-[Ny_{1}]}{N},\dots ,\frac{[Ns]-[Ny_{k}]}{N})$ converges a.e. to ${C}^{\lambda }(s-y_{1},\dots ,s-y_{k})$ as $N\to \infty $. Now apply the dominated convergence theorem to get the desired result (22).
In order to show the tightness, we need to verify that
(23)
\[\mathbb{E}{\big|{N}^{-H}\big({S_{N}^{\frac{\lambda }{N}}}(t)-{S_{N}^{\frac{\lambda }{N}}}(s)\big)\big|}^{2\gamma }\le C{\big|F_{n}(t)-F_{n}(s)\big|}^{2\alpha },\hspace{1em}0\le s<t\le 1,\]
where $\gamma >0$ and $\alpha >\frac{1}{2}$ (here $\{F_{n}\}_{n\ge 1}$ is a sequence of nondecreasing continuous functions on $[0,1]$ that are uniformly bounded and satisfy
\[\underset{\delta \to 0}{\lim }\underset{n\to \infty }{\limsup }\omega _{\delta }(F_{n})=0,\]
where $\omega _{\delta }(F):=\sup _{|t-s|<\delta }|F(t)-F(s)|$ for $\delta >0$). See Lemma 4.4.1 in [12] for more details. Observe that
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {S_{N}^{\frac{\lambda }{N}}}(t)& \displaystyle =\sum \limits_{n=1}^{[Nt]}{Y}^{\frac{\lambda }{N},k}(n)=\sum \limits_{(i_{1},\dots ,i_{k})\in \mathbb{Z}}^{{^{\prime }}}\sum \limits_{n=1}^{[Nt]}{C}^{\frac{\lambda }{N},k}(n-i_{1},\dots ,n-i_{k})\varepsilon _{i_{1}}\dots \varepsilon _{i_{k}}\\{} & \displaystyle =\sum \limits_{(i_{1},\dots ,i_{k})\in \mathbb{Z}}^{{^{\prime }}}\sum \limits_{n=1}^{[Nt]}\prod \limits_{j=1}^{k}{(n-i_{j})_{+}^{d-1}}{e}^{-\frac{\lambda }{N}(n-i_{j})_{+}}\varepsilon _{i_{1}}\dots \varepsilon _{i_{k}}\\{} & \displaystyle =\sum \limits_{(i_{1},\dots ,i_{k})\in \mathbb{Z}}^{{^{\prime }}}{N}^{kd-k+1}\Bigg[\frac{1}{N}\sum \limits_{n=1}^{[Nt]}\prod \limits_{j=1}^{k}{\bigg(\frac{n-i_{j}}{N}\bigg)_{+}^{d-1}}{e}^{-\frac{\lambda }{N}(n-i_{j})_{+}}\Bigg]\varepsilon _{i_{1}}\dots \varepsilon _{i_{k}}\\{} & \displaystyle =\sum \limits_{(i_{1},\dots ,i_{k})\in \mathbb{Z}}^{{^{\prime }}}{N}^{kd-k+1}\Bigg[{\int _{0}^{t}}\prod \limits_{j=1}^{k}{\bigg(\frac{[Ny]+1-i_{j}}{N}\bigg)_{+}^{d-1}}\\{} & \displaystyle \hspace{1em}\times {e}^{-\frac{\lambda }{N}([Ny]+1-i_{j})_{+}}\hspace{0.1667em}dy\Bigg]\varepsilon _{i_{1}}\dots \varepsilon _{i_{k}}\\{} & \displaystyle =N\sum \limits_{(i_{1},\dots ,i_{k})\in \mathbb{Z}}^{{^{\prime }}}\Bigg[{\int _{0}^{t}}\prod \limits_{j=1}^{k}{\big([Ny]+1-i_{j}\big)_{+}^{d-1}}{e}^{-\frac{\lambda }{N}([Ny]+1-i_{j})_{+}}\hspace{0.1667em}dy\Bigg]\varepsilon _{i_{1}}\dots \varepsilon _{i_{k}}.\end{array}\]
Therefore, we get
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}{\big|{N}^{-H}\big({S_{N}^{\frac{\lambda }{N}}}(t)\hspace{0.1667em}-\hspace{0.1667em}{S_{N}^{\frac{\lambda }{N}}}(s)\big)\big|}^{2}\\{} & \displaystyle \hspace{1em}={N}^{2-2H}\\{} & \displaystyle \hspace{2em}\times \mathbb{E}{\Bigg|\sum \limits_{(i_{1},\dots ,i_{k})\in \mathbb{Z}}^{{^{\prime }}}\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{\big([Ny]+1-i_{j}\big)_{+}^{d-1}}{e}^{-\frac{\lambda }{N}([Ny]+1-i_{j})_{+}}\hspace{0.1667em}dy\Bigg]\varepsilon _{i_{1}}\dots \varepsilon _{i_{k}}\Bigg|}^{2}\\{} & \displaystyle \hspace{1em}\le k!{N}^{2-2H}\sum \limits_{(i_{1},\dots ,i_{k})\in \mathbb{Z}}^{{^{\prime }}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{\big([Ny]+1-i_{j}\big)_{+}^{d-1}}{e}^{-\frac{\lambda }{N}([Ny]+1-i_{j})_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\\{} & \displaystyle \hspace{1em}=k!{N}^{2-2H+k}\\{} & \displaystyle \hspace{2em}\times {\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{\big([Ny]+1-[Nx_{j}]\big)_{+}^{d-1}}{e}^{-\frac{\lambda }{N}([Ny]+1-[Nx_{j}])_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dx_{1}\dots dx_{k}.\end{array}\]
Now, we consider two different cases corresponding with the range of d. First, assume that $\frac{1}{2}-\frac{1}{2k}<d\le 1$ (equivalently, $\frac{1}{2}<H\le 1+\frac{k}{2}$): Since $[Ny]-[Nx_{j}]+1>Ny-Nx_{j}$, we can write
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}{\big|{N}^{-H}\big({S_{N}^{\frac{\lambda }{N}}}(t)-{S_{N}^{\frac{\lambda }{N}}}(s)\big)\big|}^{2}\\{} & \displaystyle \hspace{1em}\le k!{N}^{2-2H+k}\\{} & \displaystyle \hspace{2em}\times {\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{\big([Ny]+1-[Nx_{j}]\big)_{+}^{d-1}}{e}^{-\frac{\lambda }{N}([Ny]+1-[Nx_{j}])_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dx_{1}\dots dx_{k}\\{} & \displaystyle \hspace{1em}\le k!{N}^{2-2H+2kd-k}{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-x_{j})_{+}^{d-1}}{e}^{-\lambda (y-x_{j})_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dx_{1}\dots dx_{k}\\{} & \displaystyle \hspace{1em}=k!{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-x_{j})_{+}^{d-1}}{e}^{-\lambda (y-x_{j})_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dx_{1}\dots dx_{k}.\end{array}\]
Now, let $d>1$. Since $Ny-Nx_{j}<[Ny]-[Nx_{j}]+1<Ny-Nx_{j}+N$, we have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}{\big|{N}^{-H}\big({S_{N}^{\frac{\lambda }{N}}}(t)-{S_{N}^{\frac{\lambda }{N}}}(s)\big)\big|}^{2}\\{} & \displaystyle \hspace{1em}\le k!{N}^{2-2H+k}\\{} & \displaystyle \hspace{2em}\times {\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{\big([Ny]+1-[Nx_{j}]\big)_{+}^{d-1}}{e}^{-\frac{\lambda }{N}([Ny]+1-[Nx_{j}])_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dx_{1}\dots dx_{k}\\{} & \displaystyle \hspace{1em}\le k!{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-x_{j}+1)_{+}^{d-1}}{e}^{-\lambda (y-x_{j})_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dx_{1}\dots dx_{k}\\{} & \displaystyle \hspace{1em}=k!{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-x_{j}+1)}^{d-1}{e}^{-\lambda (y-x_{j}+1)}{e}^{\lambda }\mathbf{1}_{\{y>x_{j}\}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dx_{1}\dots dx_{k}\\{} & \displaystyle \hspace{1em}={e}^{2\lambda k}k!{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-z_{j})}^{d-1}{e}^{-\lambda (y-z_{j})}\mathbf{1}_{\{y>z_{j}+1\}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dz_{1}\dots dz_{k}\\{} & \displaystyle \hspace{1em}\le {e}^{2\lambda k}k!{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-z_{j})_{+}^{d-1}}{e}^{-\lambda (y-z_{j})_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dz_{1}\dots dz_{k}.\end{array}\]
Therefore,
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}{\big|{N}^{-H}\big({S_{N}^{\frac{\lambda }{N}}}(t)-{S_{N}^{\frac{\lambda }{N}}}(s)\big)\big|}^{2}\\{} & \displaystyle \hspace{1em}\le {e}^{2\lambda k}k!{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-z_{j})_{+}^{d-1}}{e}^{-\lambda (y-z_{j})_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dz_{1}\dots dz_{k}\end{array}\]
for any $d>\frac{1}{2}-\frac{1}{2k}$ (equivalently, $H>\frac{1}{2}$). According to the proof of Lemma 1,
\[{e}^{2\lambda k}k!{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-z_{j})_{+}^{d-1}}{e}^{-\lambda (y-z_{j})_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dz_{1}\dots dz_{k}\le C|t-s{|}^{2H}\]
for $\frac{1}{2}<H<1$ and
\[{e}^{2\lambda k}k!{\int _{{\mathbb{R}}^{k}}^{{^{\prime }}}}{\Bigg[{\int _{0}^{t-s}}\prod \limits_{j=1}^{k}{(y-z_{j})_{+}^{d-1}}{e}^{-\lambda (y-z_{j})_{+}}\hspace{0.1667em}dy\Bigg]}^{2}\hspace{0.1667em}dz_{1}\dots dz_{k}\le C|t-s{|}^{2}\]
for $H>1$. Now, it remains to apply (23) by selecting $\gamma =1$, $\alpha =\min \{H,1\}$, and $F_{n}(t)=t$ to get the desired result.  □

Acknowledgments

The author would like to thank Hira Koul and Mark Meerschaert from Michigan State University for fruitful discussions.

References

[1] 
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, 9th edn. Dover, New York (1965)
[2] 
Avram, F., Taqqu, M.S.: Noncentral limit theorems and Appell polynomials. Ann. Probab. 15, 767–775 (1987). MR0885142. doi:10.1214/aop/1176992170
[3] 
Bai, S., Taqqu, M.S.: Generalized Hermite processes, discrete chaos and limit theorems. Stoch. Process. Appl. 124, 1710–1739 (2014). MR3163219. doi:10.1016/j.spa.2013.12.011
[4] 
Baricz, Á.: Bounds for modified Bessel functions of the first and second kinds. Proc. Edinb. Math. Soc. 53, 575–599 (2010). MR2720238. doi:10.1017/S0013091508001016
[5] 
Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968). MR0233396
[6] 
Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991). MR1093459. doi:10.1007/978-1-4419-0320-4
[7] 
Davydov, Y.: The invariance principle for stationary processes. Teor. Veroâtn. Primen. 15, 498–509 (1970). MR0283872
[8] 
Dobrushin, R.L., Major, P.: Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 27–52 (1979). MR0550122. doi:10.1007/BF00535673
[9] 
Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2002). MR1920153
[10] 
Friedlander S., K., Topper, L.: Turbulence: Classical Papers on Statistical Theory. Interscience Publishers, New York (1962). MR0118165
[11] 
Gaunt, R.E.: Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420, 373–386 (2014). MR3229830. doi:10.1016/j.jmaa.2014.05.083
[12] 
Giraitis, L., Koul, H.L., Surgailis, D.: Large Sample Inference for Long Memory Processes (2012). World Scientific Publishing Company Incorporated. MR2977317. doi:10.1142/p591
[13] 
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals and Products, 6th edn. Academic Press (2000). MR1773820
[14] 
Kolmogorov, A.N.: Wiener spiral and some other interesting curves in Hilbert space. Dokl. Akad. Nauk SSSR 26, 115–118 (1940)
[15] 
Lamperti, J.: Semi-stable stochastic processes. Trans. Am. Math. Soc. 104, 62–78 (1962). MR0138128. doi:10.1090/S0002-9947-1962-0138128-7
[16] 
Maejima, M.: On a class of self-similar processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 62, 235–245 (1983). MR0688988. doi:10.1007/BF00538799
[17] 
Meerschaert, M.M., Sabzikar, F.: Tempered fractional Brownian motion. Stat. Probab. Lett. 83(10), 2269–2275 (2013). MR3093813. doi:10.1016/j.spl.2013.06.016
[18] 
Meerschaert, M.M., Sabzikar, F.: Stochastic integration with respect to tempered fractional Brownian motion. Stoch. Process. Appl. 124, 2363–2387 (2014). MR3192500. doi:10.1016/j.spa.2014.03.002
[19] 
Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin/Boston (2012). MR2884383
[20] 
Meerschaert, M.M., Sabzikar, Phanikumar M. S, F., Zeleke, A.: Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech. Theory Exp. 14, P09023 (2014) (13 pp.). doi:10.1088/1742-5468/2014/09/P09023
[21] 
Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams: A survey with Computer Implementation. Springer (2011). MR2791919. doi:10.1007/978-88-470-1679-8
[22] 
Pipiras, V., Taqqu, M.: Convergence of weighted sums of random variables with long range dependence. Stoch. Process. Appl. 90, 157–174 (2000). MR1787130. doi:10.1016/S0304-4149(00)00040-5
[23] 
Pipiras, V., Taqqu, M.: Integration questions related to fractional Brownian motion. Probab. Theory Relat. Fields 118, 251–291 (2000). MR1790083. doi:10.1007/s440-000-8016-7
[24] 
Sabzikar, Meerschaert M. M, F., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015). MR3342453. doi:10.1016/j.jcp.2014.04.024
[25] 
Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall (1994). MR1280932
[26] 
Taqqu, M.S.: Convergence of integrated processes of arbitrary Hermite rank. Probab. Theory Relat. Fields 50(1), 53–83 (1979). MR0550123. doi:10.1007/BF00535674
[27] 
Whitt, W.: Stochastic-Process Limits. Springer, New York (2002). MR1876437
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Tempered Hermite process
  • 3 Limit theorem
  • Acknowledgments
  • References

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Discrete chaos limit theorem Wiener–Itô integral Fourier transform

MSC2010
60F17 60G23 60G20

Metrics
since March 2018
877

Article info
views

622

Full article
views

373

PDF
downloads

170

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    1
Theorem 1.
Theorem 1.
Let ${Y}^{\lambda ,k}(n)$ be the discrete chaos process given by (18). Then
(20)
\[\frac{1}{{N}^{H}}{S_{N}^{\frac{\lambda }{N}}}(t)\Rightarrow {Z_{H,\lambda }^{k}}(t),\]
where ⇒ means weak convergence in the Skorokhod space $D[0,1]$ with uniform metric, ${Z_{H,\lambda }^{k}}(t)$ is the tempered Hermite process in (2), and $H=1+kd-\frac{k}{2}$.

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy