Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 4 (2015)
  4. Option pricing in the model with stochas ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Option pricing in the model with stochastic volatility driven by Ornstein–Uhlenbeck process. Simulation
Volume 2, Issue 4 (2015), pp. 355–369
Sergii Kuchuk-Iatsenko   Yuliya Mishura  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA43
Pub. online: 17 December 2015      Type: Research Article      Open accessOpen Access

Received
2 December 2015
Revised
10 December 2015
Accepted
10 December 2015
Published
17 December 2015

Abstract

We consider a discrete-time approximation of paths of an Ornstein–Uhlenbeck process as a mean for estimation of a price of European call option in the model of financial market with stochastic volatility. The Euler–Maruyama approximation scheme is implemented. We determine the estimates for the option price for predetermined sets of parameters. The rate of convergence of the price and an average volatility when discretization intervals tighten are determined. Discretization precision is analyzed for the case where the exact value of the price can be derived.

References

[1] 
Andersen, L.: Simple and efficient simulation of the Heston stochastic volatility model. J. Comput. Finance 11(3), 1–42 (2008)
[2] 
Broadie, M., Kaya, O.: Exact simulation of stochastic volatility and other affine jump diffusion processes. Oper. Res. 54(2), 217–231 (2006). MR2222897. doi:10.1287/opre.1050.0247
[3] 
Brockman, P., Chowdhury, M.: Deterministic versus stochastic volatility: Implications for option pricing models. Appl. Financ. Econ. 7, 499–505 (1997)
[4] 
Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, USA (2000). MR1768877
[5] 
Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008). MR2436856. doi:10.1287/opre.1070.0496
[6] 
Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42(2), 281–300 (1987)
[7] 
Jourdain, B., Sbai, M.: High order discretization schemes for stochastic volatility models. arXiv:0908.1926 (2009)
[8] 
Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992). MR1214374. doi:10.1007/978-3-662-12616-5
[9] 
Kuchuk-Iatsenko, S., Mishura, Y.: Pricing the European call option in the model with stochastic volatility driven by Ornstein–Uhlenbeck process. Exact formulas. Modern Stoch., Theory Appl. 2(3), 233–249 (2015)
[10] 
Lewis, A.: Option Valuation Under Stochastic Volatility: With Mathematica Code. Finance Press, Newport Beach, CA (2000). MR1742310
[11] 
Maruyama, G.: Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo 4, 48–90 (1955). MR0071666
[12] 
Milstein, G.: Approximate integration of stochastic differential equations. Theory Probab. Appl. 19(3), 557–562 (1975). MR0356225
[13] 
Mishura, Y., Rizhniak, G., Zubchenko, V.: European call option issued on a bond governed by a geometric or a fractional geometric Ornstein–Uhlenbeck process. Modern Stoch., Theory Appl. 1, 95–108 (2014). MR3314796. doi:10.15559/vmsta-2014.1.1.2
[14] 
Platen, E., N., B.-L.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer, New York (2010). MR2723480. doi:10.1007/978-3-642-13694-8
[15] 
Sheikh, A.M.: Transaction data tests of S&P 100 call option pricing. J. Financ. Quant. Anal. 26, 459–475 (1991)
[16] 
van Haastrecht, A., Pelsser, A.: Efficient, almost exact simulation of the Heston stochastic volatility model. Int. J. Theor. Appl. Finance 31(1), 1–42 (2010). MR2646972. doi:10.1142/S0219024910005668
[17] 
Wang, H.: Monte Carlo Simulation with Applications to Finance. Chapman and Hall/CRC, Boca Raton, FL (2012). MR2962599
[18] 
Willard, G.: Calculating prices and sensitivities for path-independent derivative securities in multifactor models. J. Deriv. 5(1), 45–61 (1997)
[19] 
Wilmott, P., Howinson, S., Dewynne, I.: The Mathematics of Financial Derivatives. Cambridge University Press (1995). MR1357666. doi:10.1017/CBO9780511812545

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Financial markets stochastic volatility Ornstein–Uhlenbeck process option pricing discrete-time approximations Euler–Maruyama scheme

MSC2010
91B24 91B25 91G20

Metrics
since March 2018
833

Article info
views

790

Full article
views

699

PDF
downloads

156

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy