The paper focuses on the option price subdiffusive model under the unusual behavior of the market, when the price may not be changed for some time, which is a quite common situation in modern illiquid financial markets or during global crises. In the model, the risk-free bond motion and classical geometrical Brownian motion (GBM) are time-changed by an inverted inverse Gaussian($\mathit{IG}$) subordinator. We explore the correlation structure of the subdiffusive GBM stock returns process, discuss option pricing techniques based on the martingale option pricing method and the fractal Dupire equation, and demonstrate how it applies in the case of the $\mathit{IG}$ subordinator.
A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.
We consider a discrete-time approximation of paths of an Ornstein–Uhlenbeck process as a mean for estimation of a price of European call option in the model of financial market with stochastic volatility. The Euler–Maruyama approximation scheme is implemented. We determine the estimates for the option price for predetermined sets of parameters. The rate of convergence of the price and an average volatility when discretization intervals tighten are determined. Discretization precision is analyzed for the case where the exact value of the price can be derived.
We consider the Black–Scholes model of financial market modified to capture the stochastic nature of volatility observed at real financial markets. For volatility driven by the Ornstein–Uhlenbeck process, we establish the existence of equivalent martingale measure in the market model. The option is priced with respect to the minimal martingale measure for the case of uncorrelated processes of volatility and asset price, and an analytic expression for the price of European call option is derived. We use the inverse Fourier transform of a characteristic function and the Gaussian property of the Ornstein–Uhlenbeck process.