Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 12, Issue 2 (2025)
  4. Subdiffusive option price model with Inv ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Subdiffusive option price model with Inverse Gaussian subordinator
Volume 12, Issue 2 (2025), pp. 135–152
Nataliya Shchestyuk ORCID icon link to view author Nataliya Shchestyuk details   Sergii Tyshchenko ORCID icon link to view author Sergii Tyshchenko details  

Authors

 
Placeholder
https://doi.org/10.15559/24-VMSTA265
Pub. online: 12 November 2024      Type: Research Article      Open accessOpen Access

Received
16 January 2024
Revised
6 August 2024
Accepted
3 October 2024
Published
12 November 2024

Abstract

The paper focuses on the option price subdiffusive model under the unusual behavior of the market, when the price may not be changed for some time, which is a quite common situation in modern illiquid financial markets or during global crises. In the model, the risk-free bond motion and classical geometrical Brownian motion (GBM) are time-changed by an inverted inverse Gaussian($\mathit{IG}$) subordinator. We explore the correlation structure of the subdiffusive GBM stock returns process, discuss option pricing techniques based on the martingale option pricing method and the fractal Dupire equation, and demonstrate how it applies in the case of the $\mathit{IG}$ subordinator.

References

[1] 
Ascione, G.: Abstract cauchy problems for the generalized fractional calculus. Nonlinear Anal. 209, 112339 (2021) MR4236481. https://doi.org/10.1016/j.na.2021.112339
[2] 
Beghin, L., Macci, C., Martinucci, B.: Random time-changes and asymptotic results for a class of continuous-time markov chains on integers with alternating rates. Mod. Stoch. Theory Appl. 8(1), 63–91 (2020) MR4235564. https://doi.org/10.15559/20-vmsta169
[3] 
Bochner, S.: Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. 35(7), 368–370 (1949) MR0030151. https://doi.org/10.1073/pnas.35.7.368
[4] 
Castelli, F., Leonenko, N., Shchestyuk, N.: Student-like models for risky asset with dependence. Stoch. Anal. Appl. 35(3), 452–464 (2017) MR3609373. https://doi.org/10.1080/07362994.2016.1266945
[5] 
Chen, Z.-Q.: Time fractional equations and probabilistic representation. Chaos Solitons Fractals 102, 168–174 (2017) MR3672008. https://doi.org/10.1016/j.chaos.2017.04.029
[6] 
Deng, W.: Finite element method for the space and time fractional fokker–planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009) MR2452858. https://doi.org/10.1137/080714130
[7] 
Hainaut, D., Leonenko, N.: Option pricing in illiquid markets: A fractional jump–diffusion approach. J. Comput. Appl. Math. 381, 112995 (2021) MR4107797. https://doi.org/10.1016/j.cam.2020.112995
[8] 
Ivanov, R.V., Ano, K.: Option pricing in time-changed lévy models with compound poisson jumps. Mod. Stoch. Theory Appl. 6(1), 81–107 (2018) MR3935428. https://doi.org/10.15559/18-vmsta124
[9] 
Jacquier, A., Torricelli, L.: Anomalous diffusions in option prices: connecting trade duration and the volatility term structure. SIAM J. Financ. Math. 11(4), 1137–1167 (2020) MR4173215. https://doi.org/10.1137/19M1289832
[10] 
Janczura, J., Wyłomańska, A.: Anomalous diffusion models: different types of subordinator distribution. arXiv preprint arXiv:1110.2868 (2011)
[11] 
Jorgensen, B.: Statistical Properties of the Generalized Inverse Gaussian Distribution vol. 9. Springer (2012) MR0648107
[12] 
Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011) MR2854867. https://doi.org/10.1007/s00020-011-1918-8
[13] 
Kumar, A., Vellaisamy, P.: Inverse tempered stable subordinators. Stat. Probab. Lett. 103, 134–141 (2015) MR3350873. https://doi.org/10.1016/j.spl.2015.04.010
[14] 
Kumar, A., Wyłomańska, A., Połoczański, R., Sundar, S.: Fractional brownian motion time-changed by gamma and inverse gamma process. Physica A 468, 648–667 (2017) MR3580705. https://doi.org/10.1016/j.physa.2016.10.060
[15] 
Lehar, A., Scheicher, M., Schittenkopf, C.: Garch vs. stochastic volatility: Option pricing and risk management. J. Bank. Finance 26(2-3), 323–345 (2002)
[16] 
Magdziarz, M.: Black-scholes formula in subdiffusive regime. J. Stat. Phys. 136, 553–564 (2009) MR2529684. https://doi.org/10.1007/s10955-009-9791-4
[17] 
Magdziarz, M., Orzeł, S., Weron, A.: Option pricing in subdiffusive bachelier model. J. Stat. Phys. 145, 187–203 (2011) MR2841938. https://doi.org/10.1007/s10955-011-0310-z
[18] 
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000) MR1809268. https://doi.org/10.1016/S0370-1573(00)00070-3
[19] 
Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015) MR3342453. https://doi.org/10.1016/j.jcp.2014.04.024
[20] 
Scalas, E., Toaldo, B.: Limit theorems for prices of options written on semi-markov processes. Theory Probab. Math. Stat. 105, 3–33 (2021) MR4421361. https://doi.org/10.1090/tpms
[21] 
Shchestyuk, N., Tyshchenko, S.: Option pricing and stochastic optimization. In: International Conference on Stochastic Processes and Algebraic Structures, pp. 651–665 (2019). Springer MR4607864. https://doi.org/10.1007/978-3-031-17820-7_28
[22] 
Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC (2003)
[23] 
Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed c 0-semigroups. Potential Anal. 42, 115–140 (2015) MR3297989. https://doi.org/10.1007/s11118-014-9426-5
[24] 
Torricelli, L.: Trade duration risk in subdiffusive financial models. Physica A 541, 123694 (2020) MR4043912. https://doi.org/10.1016/j.physa.2019.123694
[25] 
Vellaisamy, P., Kumar, A.: The hitting time of an inverse gaussian process. Preprint (2011)
[26] 
Wyłomańska, A., Kumar, A., Połoczański, R., Vellaisamy, P.: Inverse gaussian and its inverse process as the subordinators of fractional brownian motion. Phys. Rev. E 94(4), 042128 (2016)

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Option pricing subdiffusion models subordinator inverse subordinator time-changed process hitting time

MSC2020
91B24 91G20 91G60

Funding
Nataliya Shchestyuk acknowledges financial support from the project “Portfolio management for illiquid markets” (Dnr: 20220099) funded by the Knowledge Foundation.

Metrics
since March 2018
199

Article info
views

80

Full article
views

124

PDF
downloads

20

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy