Option pricing in the model with stochastic volatility driven by Ornstein–Uhlenbeck process. Simulation
Volume 2, Issue 4 (2015), pp. 355–369
Pub. online: 17 December 2015
Type: Research Article
Open Access
Received
2 December 2015
2 December 2015
Revised
10 December 2015
10 December 2015
Accepted
10 December 2015
10 December 2015
Published
17 December 2015
17 December 2015
Abstract
We consider a discrete-time approximation of paths of an Ornstein–Uhlenbeck process as a mean for estimation of a price of European call option in the model of financial market with stochastic volatility. The Euler–Maruyama approximation scheme is implemented. We determine the estimates for the option price for predetermined sets of parameters. The rate of convergence of the price and an average volatility when discretization intervals tighten are determined. Discretization precision is analyzed for the case where the exact value of the price can be derived.
References
Broadie, M., Kaya, O.: Exact simulation of stochastic volatility and other affine jump diffusion processes. Oper. Res. 54(2), 217–231 (2006). MR2222897. doi:10.1287/opre.1050.0247
Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, USA (2000). MR1768877
Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008). MR2436856. doi:10.1287/opre.1070.0496
Jourdain, B., Sbai, M.: High order discretization schemes for stochastic volatility models. arXiv:0908.1926 (2009)
Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992). MR1214374. doi:10.1007/978-3-662-12616-5
Lewis, A.: Option Valuation Under Stochastic Volatility: With Mathematica Code. Finance Press, Newport Beach, CA (2000). MR1742310
Maruyama, G.: Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo 4, 48–90 (1955). MR0071666
Milstein, G.: Approximate integration of stochastic differential equations. Theory Probab. Appl. 19(3), 557–562 (1975). MR0356225
Mishura, Y., Rizhniak, G., Zubchenko, V.: European call option issued on a bond governed by a geometric or a fractional geometric Ornstein–Uhlenbeck process. Modern Stoch., Theory Appl. 1, 95–108 (2014). MR3314796. doi:10.15559/vmsta-2014.1.1.2
Platen, E., N., B.-L.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer, New York (2010). MR2723480. doi:10.1007/978-3-642-13694-8
van Haastrecht, A., Pelsser, A.: Efficient, almost exact simulation of the Heston stochastic volatility model. Int. J. Theor. Appl. Finance 31(1), 1–42 (2010). MR2646972. doi:10.1142/S0219024910005668
Wang, H.: Monte Carlo Simulation with Applications to Finance. Chapman and Hall/CRC, Boca Raton, FL (2012). MR2962599
Wilmott, P., Howinson, S., Dewynne, I.: The Mathematics of Financial Derivatives. Cambridge University Press (1995). MR1357666. doi:10.1017/CBO9780511812545