Functional limit theorems for additive and multiplicative schemes in the Cox–Ingersoll–Ross model
Volume 3, Issue 1 (2016), pp. 1–17
Pub. online: 3 March 2016
Type: Research Article
Open Access
Received
15 December 2015
15 December 2015
Revised
22 February 2016
22 February 2016
Accepted
25 February 2016
25 February 2016
Published
3 March 2016
3 March 2016
Abstract
In this paper, we consider the Cox–Ingersoll–Ross (CIR) process in the regime where the process does not hit zero. We construct additive and multiplicative discrete approximation schemes for the price of asset that is modeled by the CIR process and geometric CIR process. In order to construct these schemes, we take the Euler approximations of the CIR process itself but replace the increments of the Wiener process with iid bounded vanishing symmetric random variables. We introduce a “truncated” CIR process and apply it to prove the weak convergence of asset prices. We establish the fact that this “truncated” process does not hit zero under the same condition considered for the original nontruncated process.
References
Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11, 355–384 (2005). MR2186814. doi:10.1163/156939605777438569
Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM, Probab. Stat. 12, 1–11 (2008). MR2367990. doi:10.1051/ps:2007030
Billingsley, P.: Convergence of Probability Measures. John Wiley and Sons, New York, London, Sydney, Toronto (1968). MR0233396
Brigo, D., Mercurio, F.: Interest Rate Models – Theory and Practice. With Smile, Inflation and Credit, 2nd edn. Springer Finance. Springer, Berlin (2006). MR2255741
Broadie, M., Glasserman, P., Kou, S.G.: Connecting discrete continuous path-dependent options. Finance Stoch. 3, 52–82 (1999). MR1805321. doi:10.1007/s007800050052
Chang, L., Palmer, K.: Smooth convergence in the binomial model. Finance Stoch. 11, 91–105 (2007). MR2284013. doi:10.1007/s00780-006-0020-6
Cox, J.C., Ingersol, J.., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985). MR0785475. doi:10.2307/1911242
Deelstra, G.: Long-term returns in stochastic interest rate models: Applications. ASTIN Bull. 30, 123–140 (2000). MR1945550. doi:10.2143/AST.30.1.504629
Deelstra, G., Delbaen, F.: Long-term returns in stochastic interest rate models: Different convergence results. Appl. Stoch. Models Data Anal. 13, 401–407 (1997). MR1628650. doi:10.1002/(SICI)1099-0747(199709/12)13:3/4<401::AID-ASM334>3.0.CO;2-L
Deelstra, G., Delbaen, F.: Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stoch. Models Data Anal. 14, 77–84 (1998). MR1641781. doi:10.1002/(SICI)1099-0747(199803)14:1<77::AID-ASM338>3.0.CO;2-2
Dereich, S., Neuenkirch, A., Szpruch, L.: An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process. Proc. R. Soc. A, Math. Phys. Eng. Sci. 468, 1105–1115 (2012). MR2898556. doi:10.1098/rspa.2011.0505
Gyongy, I., Rasonyi, M.: A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl. 121, 2189–2200 (2011). MR2822773. doi:10.1016/j.spa.2011.06.008
Heston, S., Zhou, G.: On the rate of convergence of discrete-time contingent claims. Math. Finance 10, 53–75 (2000). MR1743973. doi:10.1111/1467-9965.00080
Hubalek, F., Schachermayer, W.: When does convergence of asset price processes imply convergence of option prices? Math. Finance 8, 385–403 (1998). MR1645093. doi:10.1111/1467-9965.00060
Ikeda, N., Watanabe, W.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1989). MR1011252
Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer (1991). MR1121940. doi:10.1007/978-1-4612-0949-2
Mao, X.: Stochastic Differential Equations and Applications. Horwood Pub. (2008). MR2380366. doi:10.1533/9780857099402
Mishura, Y.: Diffusion approximation of recurrent schemes for financial markets, with application to the Ornstein–Uhlenbeck process. Opusc. Math. 35, 99–116 (2015). MR3282967. doi:10.7494/OpMath.2015.35.1.99
Mishura, Y.: The rate of convergence of option prices on the asset following geometric Ornstein–Uhlenbeck process. Lith. Math. J. 55, 134–149 (2015). MR3323287. doi:10.1007/s10986-015-9270-3
Mishura, Y.: The rate of convergence of option prices when general martingale discrete-time scheme approximates the Black–Scholes model. Banach Cent. Publ., Adv. Math. Finance 104, 151–165 (2015). MR3363984. doi:10.4064/bc104-0-8
Mishura, Y., Munchak, Y.: The rate of convergence of prices of options issued on the assets following Bernoulli jumps discretization scheme of geometric Ornstein–Uhlenbeck process. Theory Probab. Math. Stat. 93 (2015) (in Ukrainian). MR3363984. doi:10.4064/bc104-0-8
Zhu, L.: Limit theorems for a Cox–Ingersoll–Ross process with Hawkes jumps. J. Appl. Probab. 51, 699–712 (2014). MR3256221. doi:10.1239/jap/1409932668