Asymptotic normality of total least squares estimator in a multivariate errors-in-variables model         
        
    
        Volume 3, Issue 1 (2016), pp. 47–57
            
    
                    Pub. online: 29 March 2016
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
11 February 2016
                                    11 February 2016
                Revised
7 March 2016
                                    7 March 2016
                Accepted
11 March 2016
                                    11 March 2016
                Published
29 March 2016
                    29 March 2016
Abstract
We consider a multivariate functional measurement error model $AX\approx B$. The errors in $[A,B]$ are uncorrelated, row-wise independent, and have equal (unknown) variances. We study the total least squares estimator of X, which, in the case of normal errors, coincides with the maximum likelihood one. We give conditions for asymptotic normality of the estimator when the number of rows in A is increasing. Under mild assumptions, the covariance structure of the limit Gaussian random matrix is nonsingular. For normal errors, the results can be used to construct an asymptotic confidence interval for a linear functional of X.
            References
 Cartan, H.: Differential Calculus. Hermann/Houghton Mifflin Co., Paris/Boston, MA (1971). Translated from French. MR0344032 
 Cheng, C.-L., Van Ness, J.W.: Statistical Regression with Measurement Error. Kendall’s Library of Statistics, vol. 6. Arnold, London (1999). Co-published by Oxford University Press, New York. MR1719513 
 Fuller, W.A.: Measurement Error Models. John Wiley & Sons, Inc., New York (1987). MR0898653. doi:10.1002/9780470316665 
 Gallo, P.P.: Properties of estimators errors-in-variables models. PhD thesis, The University of North Carolina at Chapel Hill, NC (1982). MR2632121 
 Kukush, A., Van Huffel, S.: Consistency of elementwise-weighted total least squares estimator in a multivariate errors-in-variables model $AX=B$. Metrika 59(1), 75–97 (2004). MR2043433. doi:10.1007/s001840300272 
 Markovsky, I., Rastello, M.L., Premoli, A., Kukush, A., Van Huffel, S.: The element-wise weighted total least-squares problem. Comput. Stat. Data Anal. 50(1), 181–209 (2006). MR2196229. doi:10.1016/j.csda.2004.07.014 
 Pešta, M.: Asymptotics for weakly dependent errors-in-variables. Kybernetika 49(5), 692–704 (2013). MR3182634 
 Sprent, P.: A generalized least-squares approach to linear functional relationships. J. R. Stat. Soc. B 28, 278–297 (1966). MR0230432 
 Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem. Frontiers in Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1991). MR1118607. doi:10.1137/1.9781611971002 
 
            