Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 1 (2016)
  4. Asymptotic normality of total least squa ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

This article has corrections. See corrections.
Asymptotic normality of total least squares estimator in a multivariate errors-in-variables model AX=B
Volume 3, Issue 1 (2016), pp. 47–57
Alexander Kukush   Yaroslav Tsaregorodtsev  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA50
Pub. online: 29 March 2016      Type: Research Article      Open accessOpen Access

Received
11 February 2016
Revised
7 March 2016
Accepted
11 March 2016
Published
29 March 2016

Abstract

We consider a multivariate functional measurement error model $AX\approx B$. The errors in $[A,B]$ are uncorrelated, row-wise independent, and have equal (unknown) variances. We study the total least squares estimator of X, which, in the case of normal errors, coincides with the maximum likelihood one. We give conditions for asymptotic normality of the estimator when the number of rows in A is increasing. Under mild assumptions, the covariance structure of the limit Gaussian random matrix is nonsingular. For normal errors, the results can be used to construct an asymptotic confidence interval for a linear functional of X.

References

[1] 
Cartan, H.: Differential Calculus. Hermann/Houghton Mifflin Co., Paris/Boston, MA (1971). Translated from French. MR0344032
[2] 
Cheng, C.-L., Van Ness, J.W.: Statistical Regression with Measurement Error. Kendall’s Library of Statistics, vol. 6. Arnold, London (1999). Co-published by Oxford University Press, New York. MR1719513
[3] 
Fuller, W.A.: Measurement Error Models. John Wiley & Sons, Inc., New York (1987). MR0898653. doi:10.1002/9780470316665
[4] 
Gallo, P.P.: Properties of estimators errors-in-variables models. PhD thesis, The University of North Carolina at Chapel Hill, NC (1982). MR2632121
[5] 
Kukush, A., Van Huffel, S.: Consistency of elementwise-weighted total least squares estimator in a multivariate errors-in-variables model $AX=B$. Metrika 59(1), 75–97 (2004). MR2043433. doi:10.1007/s001840300272
[6] 
Markovsky, I., Rastello, M.L., Premoli, A., Kukush, A., Van Huffel, S.: The element-wise weighted total least-squares problem. Comput. Stat. Data Anal. 50(1), 181–209 (2006). MR2196229. doi:10.1016/j.csda.2004.07.014
[7] 
Pešta, M.: Asymptotics for weakly dependent errors-in-variables. Kybernetika 49(5), 692–704 (2013). MR3182634
[8] 
Sprent, P.: A generalized least-squares approach to linear functional relationships. J. R. Stat. Soc. B 28, 278–297 (1966). MR0230432
[9] 
Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem. Frontiers in Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1991). MR1118607. doi:10.1137/1.9781611971002

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Asymptotic normality multivariate errors-in-variables model total least squares

MSC2010
15A52 65F20 62E20 62S05 62F12 62H12

Metrics
since March 2018
598

Article info
views

410

Full article
views

338

PDF
downloads

165

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy