Initiated around the year 2007, the Malliavin–Stein approach to probabilistic approximations combines Stein’s method with infinite-dimensional integration by parts formulae based on the use of Malliavin-type operators. In the last decade, Malliavin–Stein techniques have allowed researchers to establish new quantitative limit theorems in a variety of domains of theoretical and applied stochastic analysis. The aim of this survey is to illustrate some of the latest developments of the Malliavin–Stein method, with specific emphasis on extensions and generalizations in the framework of Markov semigroups and of random point measures.
In this paper we present some new limit theorems for power variations of stationary increment Lévy driven moving average processes. Recently, such asymptotic results have been investigated in [Ann. Probab. 45(6B) (2017), 4477–4528, Festschrift for Bernt Øksendal, Stochastics 81(1) (2017), 360–383] under the assumption that the kernel function potentially exhibits a singular behaviour at 0. The aim of this work is to demonstrate how some of the results change when the kernel function has multiple singularity points. Our paper is also related to the article [Stoch. Process. Appl. 125(2) (2014), 653–677] that studied the same mathematical question for the class of Brownian semi-stationary models.