Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 4 (2016)
  4. Drift parameter estimation in stochastic ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
Volume 3, Issue 4 (2016), pp. 269–285
Meriem Bel Hadj Khlifa   Yuliya Mishura   Kostiantyn Ralchenko   Mounir Zili  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA66
Pub. online: 13 December 2016      Type: Research Article      Open accessOpen Access

Received
9 November 2016
Revised
3 December 2016
Accepted
4 December 2016
Published
13 December 2016

Abstract

We consider a stochastic differential equation of the form
\[ dX_{t}=\theta a(t,X_{t})\hspace{0.1667em}dt+\sigma _{1}(t,X_{t})\sigma _{2}(t,Y_{t})\hspace{0.1667em}dW_{t}\]
with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for weak and strong solutions of this equation under various conditions on the process Y and the coefficients a, $\sigma _{1}$, and $\sigma _{2}$. Also, we study the strong consistency of the maximum likelihood estimator for the unknown parameter θ. We suppose that Y is in turn a solution of some diffusion SDE. Several examples of the main equation and of the process Y are provided supplying the strong consistency.

References

[1] 
Aït-Sahalia, Y., Kimmel, R.: Maximum likelihood estimation of stochastic volatility models. J. Financ. Econ. 83, 413–452 (2007)
[2] 
Altay, S., Schmock, U.: Lecture notes on the Yamada–Watanabe condition for the pathwise uniqueness of solutions of certain stochastic differential equations. fam.tuwien.ac.at/~schmock/notes/Yamada-Watanabe.pdf. Accessed 25 April 2013
[3] 
Cherny, A.S., Engelbert, H.-J.: Singular Stochastic Differential Equations. Lecture Notes in Mathematics, vol. 1858, Springer (2005) MR2112227. doi:10.1007/b104187
[4] 
Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000) MR1768877
[5] 
Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Mean-reverting stochastic volatility. Int. J. Theor. Appl. Finance 3(1), 101–142 (2000)
[6] 
Heston, S.: A closed-form solution of options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)
[7] 
Heyde, C.C.: Quasi-likelihood and Its Application. Springer Series in Statistics. Springer (1997) MR1461808. doi:10.1007/b98823
[8] 
Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987)
[9] 
Jankunas, A., Khasminskii, R.Z.: Estimation of parameters of linear homogenous stochastic differential equations. Stochastic Process. Appl. 72(2), 205–219 (1997) MR1486553. doi:10.1016/S0304-4149(97)00083-5
[10] 
Krylov, N.V.: On Itô’s stochastic integral equations. Theory Probab. Appl. 14(2), 330–336 (1969) MR0270462
[11] 
Krylov, N.V.: Controlled Diffusion Processes. Applications of Mathematics, vol. 14, Springer (1980) MR0601776
[12] 
Kuchuk-Iatsenko, S., Mishura, Y.: Option pricing in the model with stochastic volatility driven by Ornstein–Uhlenbeck process. Simulation. Mod. Stoch. Theory Appl. 2(4), 355–369 (2015) MR3456143. doi:10.15559/15-VMSTA43
[13] 
Kuchuk-Iatsenko, S., Mishura, Y.: Pricing the European call option in the model with stochastic volatility driven by Ornstein–Uhlenbeck process. Exact formulas. Mod. Stoch. Theory Appl. 2(3), 233–249 (2015) MR3407504. doi:10.15559/15-VMSTA36CNF
[14] 
Liptser, R.S., Shiryayev, A.N.: Theory of Martingales. Mathematics and its Applications (Soviet Series), vol. 49. Kluwer Academic Publishers Group, Dordrecht (1989) MR1022664. doi:10.1007/978-94-009-2438-3
[15] 
Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes. I. Applications of Mathematics (New York), vol. 5, Springer (2001) MR1800858
[16] 
Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes. II. Applications of Mathematics (New York), vol. 6, Springer (2001) MR1800858
[17] 
Mijatović, A., Urusov, M.: Convergence of integral functionals of one-dimensional diffusions. Electron. Commun. Probab. 17, 61–13 (2012) MR3005734. doi:10.1214/ECP.v17-1825
[18] 
Mishura, Y.: Standard maximum likelihood drift parameter estimator in the homogeneous diffusion model is always strongly consistent. Statist. Probab. Lett. 86, 24–29 (2014) MR3162713. doi:10.1016/j.spl.2013.12.004
[19] 
Nisio, M.: Stochastic Control Theory. Dynamic Programming Principle, 2nd edn. Probability Theory and Stochastic Modelling, vol. 72, Springer (2015) MR3290231. doi:10.1007/978-4-431-55123-2
[20] 
Skorokhod, A.V.: Studies in the Theory of Random Processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass. (1965) MR0185620
[21] 
Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with continuous coefficients. I. Comm. Pure Appl. Math. 22, 345–400 (1969) MR0253426
[22] 
Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with continuous coefficients. II. Comm. Pure Appl. Math. 22, 479–530 (1969) MR0254923
[23] 
Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155–167 (1971) MR0278420

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic differential equation weak and strong solutions stochastic volatility drift parameter estimation maximum likelihood estimator strong consistency

MSC2010
60H10 62F10 62F12

Metrics
since March 2018
702

Article info
views

690

Full article
views

418

PDF
downloads

196

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy