Drift parameter estimation in stochastic differential equation with multiplicative stochastic volatility
Volume 3, Issue 4 (2016), pp. 269–285
Pub. online: 13 December 2016
Type: Research Article
Open Access
Received
9 November 2016
9 November 2016
Revised
3 December 2016
3 December 2016
Accepted
4 December 2016
4 December 2016
Published
13 December 2016
13 December 2016
Abstract
We consider a stochastic differential equation of the form
\[ dX_{t}=\theta a(t,X_{t})\hspace{0.1667em}dt+\sigma _{1}(t,X_{t})\sigma _{2}(t,Y_{t})\hspace{0.1667em}dW_{t}\]
with multiplicative stochastic volatility, where Y is some adapted stochastic process. We prove existence–uniqueness results for weak and strong solutions of this equation under various conditions on the process Y and the coefficients a, $\sigma _{1}$, and $\sigma _{2}$. Also, we study the strong consistency of the maximum likelihood estimator for the unknown parameter θ. We suppose that Y is in turn a solution of some diffusion SDE. Several examples of the main equation and of the process Y are provided supplying the strong consistency.References
Cherny, A.S., Engelbert, H.-J.: Singular Stochastic Differential Equations. Lecture Notes in Mathematics, vol. 1858, Springer (2005) MR2112227. doi:10.1007/b104187
Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000) MR1768877
Heyde, C.C.: Quasi-likelihood and Its Application. Springer Series in Statistics. Springer (1997) MR1461808. doi:10.1007/b98823
Jankunas, A., Khasminskii, R.Z.: Estimation of parameters of linear homogenous stochastic differential equations. Stochastic Process. Appl. 72(2), 205–219 (1997) MR1486553. doi:10.1016/S0304-4149(97)00083-5
Krylov, N.V.: On Itô’s stochastic integral equations. Theory Probab. Appl. 14(2), 330–336 (1969) MR0270462
Krylov, N.V.: Controlled Diffusion Processes. Applications of Mathematics, vol. 14, Springer (1980) MR0601776
Kuchuk-Iatsenko, S., Mishura, Y.: Option pricing in the model with stochastic volatility driven by Ornstein–Uhlenbeck process. Simulation. Mod. Stoch. Theory Appl. 2(4), 355–369 (2015) MR3456143. doi:10.15559/15-VMSTA43
Kuchuk-Iatsenko, S., Mishura, Y.: Pricing the European call option in the model with stochastic volatility driven by Ornstein–Uhlenbeck process. Exact formulas. Mod. Stoch. Theory Appl. 2(3), 233–249 (2015) MR3407504. doi:10.15559/15-VMSTA36CNF
Liptser, R.S., Shiryayev, A.N.: Theory of Martingales. Mathematics and its Applications (Soviet Series), vol. 49. Kluwer Academic Publishers Group, Dordrecht (1989) MR1022664. doi:10.1007/978-94-009-2438-3
Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes. I. Applications of Mathematics (New York), vol. 5, Springer (2001) MR1800858
Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes. II. Applications of Mathematics (New York), vol. 6, Springer (2001) MR1800858
Mijatović, A., Urusov, M.: Convergence of integral functionals of one-dimensional diffusions. Electron. Commun. Probab. 17, 61–13 (2012) MR3005734. doi:10.1214/ECP.v17-1825
Mishura, Y.: Standard maximum likelihood drift parameter estimator in the homogeneous diffusion model is always strongly consistent. Statist. Probab. Lett. 86, 24–29 (2014) MR3162713. doi:10.1016/j.spl.2013.12.004
Nisio, M.: Stochastic Control Theory. Dynamic Programming Principle, 2nd edn. Probability Theory and Stochastic Modelling, vol. 72, Springer (2015) MR3290231. doi:10.1007/978-4-431-55123-2
Skorokhod, A.V.: Studies in the Theory of Random Processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass. (1965) MR0185620
Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with continuous coefficients. I. Comm. Pure Appl. Math. 22, 345–400 (1969) MR0253426
Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with continuous coefficients. II. Comm. Pure Appl. Math. 22, 479–530 (1969) MR0254923
Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155–167 (1971) MR0278420