Description of the symmetric convex random closed sets as zonotopes from their Feret diameters
Volume 3, Issue 4 (2016), pp. 325–364
Pub. online: 3 January 2017
Type: Research Article
Open Access
Received
24 October 2016
24 October 2016
Revised
7 December 2016
7 December 2016
Accepted
14 December 2016
14 December 2016
Published
3 January 2017
3 January 2017
Abstract
In this paper, the 2-D random closed sets (RACS) are studied by means of the Feret diameter, also known as the caliper diameter. More specifically, it is shown that a 2-D symmetric convex RACS can be approximated as precisely as we want by some random zonotopes (polytopes formed by the Minkowski sum of line segments) in terms of the Hausdorff distance. Such an approximation is fully defined from the Feret diameter of the 2-D convex RACS. Particularly, the moments of the random vector representing the face lengths of the zonotope approximation are related to the moments of the Feret diameter random process of the RACS.
References
Ballani, F.: The surface pair correlation function for stationary boolean models. Adv. Appl. Probab. 39(1), 1–15 (2007). MR2307868. doi:10.1239/aap/1175266466
Bárány, I., Reitzner, M.: On the variance of random polytopes. Adv. Math. 225(4), 1986–2001 (2010). MR2680197. doi:10.1016/j.aim.2010.04.012
Bronstein, E.M.: Approximation of convex sets by polytopes. J. Math. Sci. 153(6), 727–762 (2008). MR2336506. doi:10.1007/s10958-008-9144-x
Campi, S., Haas, D., Weil, W.: Approximation of zonoids by zonotopes in fixed directions. Discrete Comput. Geom. 11(4), 419–431 (1994). MR1273226. doi:10.1007/BF02574016
Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. John Wiley & Sons (2013). MR3236788. doi:10.1002/9781118658222
Dafnis, N., Giannopoulos, A., Tsolomitis, A.: Asymptotic shape of a random polytope in a convex body. J. Funct. Anal. 257(9), 2820–2839 (2009). MR2559718. doi:10.1016/j.jfa.2009.06.027
Gardner, R.J.: Geometric Tomography, vol. 6. Cambridge University Press, Cambridge (1995). MR1356221
Glasauer, S., Schneider, R.: Asymptotic approximation of smooth convex bodies by polytopes. In: Forum Mathematicum, vol. 8, pp. 363–378 (1996). MR1387701. doi:10.1515/form.1996.8.363
Heinrich, L., Molchanov, I.S.: Central limit theorem for a class of random measures associated with germ–grain models. Advances in Applied Probability, 283–314 (1999). MR1724553. doi:10.1239/aap/1029955136
Hoffmann, L.M.: On weak stationarity and weak isotropy of processes of convex bodies and cylinders. Advances in Applied Probability, 864–882 (2007). MR2381578
McClure, D.E., Vitale, R.A.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51(2), 326–358 (1975). MR0385714
Michielsen, K., De Raedt, H.: Integral-geometry morphological image analysis. Phys. Rep. 347(6), 461–538 (2001). MR1840716. doi:10.1016/S0370-1573(00)00106-X
Miles, R.E.: Random polygons determined by random lines in a plane. Proc. Natl. Acad. Sci. 52(4), 901–907 (1964). MR0168000
Molchanov, I.S.: Statistics of the boolean model: From the estimation of means to the estimation of distributions. Adv. Appl. Probab. 27(1), 63–86 (1995). MR1315578. doi:10.2307/1428096
Molchanov, I.S., Stoyan, D.: Asymptotic properties of estimators for parameters of the boolean model. Advances in Applied Probability, 301–323 (1994). MR1272713. doi:10.2307/1427437
Rahmani, S., Pinoli, J.-C., Debayle, J.: Characterization and estimation of the variations of a random convex set by its mean n-variogram: Application to the boolean model. In: International Conference on Geometric Science of Information, pp. 296–308, Springer (2015). MR3442211. doi:10.1007/978-3-319-25040-3_33
Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, vol. 151. Cambridge University Press (2013). MR1216521. doi:10.1017/CBO9780511526282
Sundararajan, D.: The Discrete Fourier Transform: Theory, Algorithms and Applications. World Scientific (2001). MR1867505. doi:10.1142/9789812810298
Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16. Springer (2002). MR1862782. doi:10.1007/978-1-4757-6355-3
Zafari, S., Eerola, T., Sampo, J., Kälviäinen, H., Haario, H.: Segmentation of overlapping elliptical objects in silhouette images. IEEE Trans. Image Process. 24(12), 5942–5952 (2015). MR3423819. doi:10.1109/TIP.2015.2492828