A new, direct proof of the formulas for the conic intrinsic volumes of the Weyl chambers of types ${A_{n-1}}$, ${B_{n}}$ and ${D_{n}}$ is given. These formulas express the conic intrinsic volumes in terms of the Stirling numbers of the first kind and their B- and D-analogues. The proof involves an explicit determination of the internal and external angles of the faces of the Weyl chambers.
In this paper, the 2-D random closed sets (RACS) are studied by means of the Feret diameter, also known as the caliper diameter. More specifically, it is shown that a 2-D symmetric convex RACS can be approximated as precisely as we want by some random zonotopes (polytopes formed by the Minkowski sum of line segments) in terms of the Hausdorff distance. Such an approximation is fully defined from the Feret diameter of the 2-D convex RACS. Particularly, the moments of the random vector representing the face lengths of the zonotope approximation are related to the moments of the Feret diameter random process of the RACS.