Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 9, Issue 3 (2022)
  4. Conic intrinsic volumes of Weyl chambers

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Conic intrinsic volumes of Weyl chambers
Volume 9, Issue 3 (2022), pp. 357–375
Thomas Godland ORCID icon link to view author Thomas Godland details   Zakhar Kabluchko ORCID icon link to view author Zakhar Kabluchko details  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA206
Pub. online: 7 June 2022      Type: Research Article      Open accessOpen Access

Received
14 January 2022
Revised
9 May 2022
Accepted
9 May 2022
Published
7 June 2022

Abstract

A new, direct proof of the formulas for the conic intrinsic volumes of the Weyl chambers of types ${A_{n-1}}$, ${B_{n}}$ and ${D_{n}}$ is given. These formulas express the conic intrinsic volumes in terms of the Stirling numbers of the first kind and their B- and D-analogues. The proof involves an explicit determination of the internal and external angles of the faces of the Weyl chambers.

References

[1] 
Abramson, J., Pitman, J.: Concave majorants of random walks and related Poisson processes. Combin. Probab. Comput. 20(5), 651–682 (2011). MR2825583. https://doi.org/10.1017/S0963548311000307
[2] 
Abramson, J., Pitman, J., Ross, N., Uribe Bravo, G.: Convex minorants of random walks and Lévy processes. Electron. Commun. Probab. 16, 423–434 (2011). MR2831081. https://doi.org/10.1214/ECP.v16-1648
[3] 
Alsmeyer, G., Kabluchko, Z., Marynych, A., Vysotsky, V.: How long is the convex minorant of a one-dimensional random walk? Electron. J. Probab. 25, 1–22 (2020). MR4147518. https://doi.org/10.1214/20-ejp497
[4] 
Amelunxen, D., Bürgisser, P.: Intrinsic volumes of symmetric cones and applications in convex programming. Math. Program. 149(1-2, Ser. A), 105–130 (2015). MR3300458. https://doi.org/10.1007/s10107-013-0740-2
[5] 
Amelunxen, D., Bürgisser, P.: Probabilistic analysis of the Grassmann condition number. Found. Comput. Math. 15(1), 3–51 (2015). MR3303690. https://doi.org/10.1007/s10208-013-9178-4
[6] 
Amelunxen, D., Lotz, M., McCoy, M.B., Tropp, J.A.: Living on the edge: phase transitions in convex programs with random data. Information and Inference 3(3), 224–294 (2014). MR3311453. https://doi.org/10.1093/imaiai/iau005
[7] 
Amelunxen, D., Lotz, M.: Intrinsic volumes of polyhedral cones: A combinatorial perspective. Discrete Comput. Geom. 58(2), 371–409 (2017). MR3679941. https://doi.org/10.1007/s00454-017-9904-9
[8] 
Bagno, E., Garber, D.: Signed partitions – A balls into urns approach. Preprint at arXiv:1903.02877 (2019). MR4408200
[9] 
Bagno, E., Biagioli, R., Garber, D.: Some identities involving second kind Stirling numbers of types B and D. Elect. J. Combin. 26(3), 3–9 (2019). MR3982318. https://doi.org/10.37236/8703
[10] 
Bala, P.: A 3-parameter family of generalized Stirling numbers. Preprint at https://oeis.org/A143395/a143395.pdf (2015)
[11] 
Bóna, M. (ed.): Handbook of Enumerative Combinatorics. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL (2015). MR3408702
[12] 
Dowling, T.A.: A class of geometric lattices based on finite groups. J. Combinatorial Theory Ser. B 14, 61–86 (1973). MR0307951. https://doi.org/10.1016/s0095-8956(73)80007-3
[13] 
Drton, M., Klivans, C.J.: A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138(8), 2873–2887 (2010). MR2644900. https://doi.org/10.1090/S0002-9939-10-10369-4
[14] 
Gao, F.: The mean of a maximum likelihood estimator associated with the Brownian bridge. Electron. Comm. Probab. 8, 1–5 (2003). MR1961284. https://doi.org/10.1214/ECP.v8-1064
[15] 
Gao, F., Vitale, R.A.: Intrinsic volumes of the Brownian motion body. Discrete Comput. Geom. 26(1), 41–50 (2001). MR1832728. https://doi.org/10.1007/s00454-001-0023-1
[16] 
Henze, N.: Weitere Überraschungen im Zusammenhang mit dem Schnur-Orakel. Stochastik in der Schule 33(3), 18–23 (2013)
[17] 
Hug, D., Schneider, R.: Random conical tessellations. Discrete Comput. Geom. 56(2), 395–426 (2016). MR3530973. https://doi.org/10.1007/s00454-016-9788-0
[18] 
Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511623646
[19] 
Kabluchko, Z., Vysotsky, V., Zaporozhets, D.: Convex hulls of random walks: expected number of faces and face probabilities. Adv. Math. 320, 595–629 (2017). MR3709116. https://doi.org/10.1016/j.aim.2017.09.002
[20] 
Kabluchko, Z., Vysotsky, V., Zaporozhets, D.: Convex hulls of random walks, hyperplane arrangements, and Weyl chambers. Geom. Funct. Anal. 27(4), 880–918 (2017). MR3678504. https://doi.org/10.1007/s00039-017-0415-x
[21] 
Klivans, C.J., Swartz, E.: Projection volumes of hyperplane arrangements. Discrete Comput. Geom. 46(3), 417–426 (2011). MR2826960. https://doi.org/10.1007/s00454-011-9363-7
[22] 
Lang, W.: On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers. Preprint at arXiv:1707.04451 (2017)
[23] 
Pitman, J.: Combinatorial Stochastic Processes. Lecture Notes in Mathematics. Springer (2006). MR2245368
[24] 
Schneider, R.: Combinatorial identities for polyhedral cones. St. Petersburg Math. J. 29(1), 209–221 (2018). MR3660692. https://doi.org/10.1090/spmj/1489
[25] 
Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer (2008). MR2455326. https://doi.org/10.1007/978-3-540-78859-1
[26] 
Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J. Math. 6, 274–304 (1954). MR0059914. https://doi.org/10.4153/cjm-1954-028-3
[27] 
Sloane (editor), N.J.A.: The On-Line Encyclopedia of Integer Sequences. https://oeis.org
[28] 
Sparre Andersen, E.: On the number of positive sums of random variables. Scandinavian Actuarial Journal 1949(1), 27–36 (1949). MR0032115. https://doi.org/10.1080/03461238.1949.10419756
[29] 
Sparre Andersen, E.: On the fluctuations of sums of random variables. Math. Scand. 1, 263–285 (1953). MR0058893. https://doi.org/10.7146/math.scand.a-10385
[30] 
Sparre Andersen, E.: On the fluctuations of sums of random variables II. Math. Scand. 2, 195–223 (1954). MR0068154
[31] 
Stanley, R.P.: An introduction to hyperplane arrangements. In: Miller, E., Reiner, V., Sturmfels, B. (eds.) Geometric Combinatorics. IAS/Park City Mathematics Series, vol. 13, pp. 389–496. AMS (2007). MR2383131. https://doi.org/10.1090/pcms/013/08
[32] 
Suter, R.: Two analogues of a classical sequence. J. Integer Seq. 3(1), 1–18 (2000). MR1750742
[33] 
Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995). MR1311028. https://doi.org/10.1007/978-1-4613-8431-1

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic geometry polyhedral cones Weyl chambers conic intrinsic volumes external angles internal angles Stirling numbers random walks and bridges

MSC2010
52A22 60D05 52A55 11B73 51F15 52A39

Funding
Both authors are supported by the German Research Foundation under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics – Geometry – Structure and by the DFG priority program SPP 2265 Random Geometric Systems

Metrics
since March 2018
459

Article info
views

385

Full article
views

360

PDF
downloads

117

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy