Generalized fractional Brownian motion
Volume 4, Issue 1 (2017), pp. 15–24
Pub. online: 16 January 2017
Type: Research Article
Open Access
Received
13 November 2016
13 November 2016
Accepted
14 December 2016
14 December 2016
Published
16 January 2017
16 January 2017
Abstract
We introduce a new Gaussian process, a generalization of both fractional and subfractional Brownian motions, which could serve as a good model for a larger class of natural phenomena. We study its main stochastic properties and some increments characteristics. As an application, we deduce the properties of nonsemimartingality, Hölder continuity, nondifferentiablity, and existence of a local time.
References
Berman, S.M.: Local times and sample functions properties of stationary Gaussian processes. Trans. Am. Math. Soc. 137, 277–299 (1969). MR0239652. doi:10.1090/S0002-9947-1969-0239652-5
Bojdecki, T., Gorostizab, L.G., Talarczyka, A.: Fractional Brownian density process and its self-intersection local time of order k. J. Theor. Probab. 17(3), 717–739 (2004). MR2091558. doi:10.1023/B:JOTP.0000040296.95910.e1
Bojdecki, T., Gorostizab, L.G., Talarczyka, A.: Sub-fractional Brownian motion and its relation to occupation times. Stat. Probab. Lett. 69(4), 405–419 (2004). MR2091760. doi:10.1016/j.spl.2004.06.035
El-Nouty, C., Zili, M.: On the sub-mixed fractional Brownian motion. Appl. Math. J. Chin. Univ. 30(1), 27–43 (2015). MR3319622. doi:10.1007/s11766-015-3198-6
Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. In: Contemp. Math., vol. 336, pp. 195–201. Am. Math. Soc. (2003). MR2037165. doi:10.1090/conm/336/06034
Tudor, C.: Some properties of the sub-fractional Brownian motion. Stochastics 79, 431–448 (2007). MR2356519. doi:10.1080/17442500601100331
Sghir, A.: The generalized sub-fractional Brownian motion. Commun. Stoch. Anal.. 7(3), 373–382 (2013). MR3167404
Zili, M.: On the mixed-fractional Brownian motion. J. Appl. Math. Stoch. Anal. 2006, 32435 (2006). MR2253522. doi:10.1155/JAMSA/2006/32435
Zili, M.: Mixed sub-fractional Brownian motion. Random Oper. Stoch. Equ. 22(3), 163–178 (August 2014). ISSN (Online) 1569-397X, ISSN (Print) 0926-6364. MR3259127. doi:10.1515/rose-2014-0017