Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 1 (2017)
  4. Generalized fractional Brownian motion

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Generalized fractional Brownian motion
Volume 4, Issue 1 (2017), pp. 15–24
Mounir Zili  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA71
Pub. online: 16 January 2017      Type: Research Article      Open accessOpen Access

Received
13 November 2016
Accepted
14 December 2016
Published
16 January 2017

Abstract

We introduce a new Gaussian process, a generalization of both fractional and subfractional Brownian motions, which could serve as a good model for a larger class of natural phenomena. We study its main stochastic properties and some increments characteristics. As an application, we deduce the properties of nonsemimartingality, Hölder continuity, nondifferentiablity, and existence of a local time.

References

[1] 
Berman, S.M.: Local times and sample functions properties of stationary Gaussian processes. Trans. Am. Math. Soc. 137, 277–299 (1969). MR0239652. doi:10.1090/S0002-9947-1969-0239652-5
[2] 
Bojdecki, T., Gorostizab, L.G., Talarczyka, A.: Fractional Brownian density process and its self-intersection local time of order k. J. Theor. Probab. 17(3), 717–739 (2004). MR2091558. doi:10.1023/B:JOTP.0000040296.95910.e1
[3] 
Bojdecki, T., Gorostizab, L.G., Talarczyka, A.: Sub-fractional Brownian motion and its relation to occupation times. Stat. Probab. Lett. 69(4), 405–419 (2004). MR2091760. doi:10.1016/j.spl.2004.06.035
[4] 
El-Nouty, C., Zili, M.: On the sub-mixed fractional Brownian motion. Appl. Math. J. Chin. Univ. 30(1), 27–43 (2015). MR3319622. doi:10.1007/s11766-015-3198-6
[5] 
Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. In: Contemp. Math., vol. 336, pp. 195–201. Am. Math. Soc. (2003). MR2037165. doi:10.1090/conm/336/06034
[6] 
Tudor, C.: Some properties of the sub-fractional Brownian motion. Stochastics 79, 431–448 (2007). MR2356519. doi:10.1080/17442500601100331
[7] 
Peltier, R.F., Lévy, J.: Véhel Multifractional Brownian motion: definition and preliminary results. Rapport de recherche INRIA, No. 2645
[8] 
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren Math. Wiss., vol. 293, Springer (1999).
[9] 
Sghir, A.: The generalized sub-fractional Brownian motion. Commun. Stoch. Anal.. 7(3), 373–382 (2013). MR3167404
[10] 
Zili, M.: On the mixed-fractional Brownian motion. J. Appl. Math. Stoch. Anal. 2006, 32435 (2006). MR2253522. doi:10.1155/JAMSA/2006/32435
[11] 
Zili, M.: Mixed sub-fractional Brownian motion. Random Oper. Stoch. Equ. 22(3), 163–178 (August 2014). ISSN (Online) 1569-397X, ISSN (Print) 0926-6364. MR3259127. doi:10.1515/rose-2014-0017

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2017 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Generalized fractional and subfractional Brownian motion stationarity Markovity semimartingality

Metrics
since March 2018
813

Article info
views

488

Full article
views

467

PDF
downloads

170

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy