Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 1 (2017)
  4. Large deviations for i.i.d. replications ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Large deviations for i.i.d. replications of the total progeny of a Galton–Watson process
Volume 4, Issue 1 (2017), pp. 1–13
Claudio Macci   Barbara Pacchiarotti  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA72
Pub. online: 11 January 2017      Type: Research Article      Open accessOpen Access

Received
27 September 2016
Revised
15 December 2016
Accepted
17 December 2016
Published
11 January 2017

Abstract

The Galton–Watson process is the simplest example of a branching process. The relationship between the offspring distribution, and, when the extinction occurs almost surely, the distribution of the total progeny is well known. In this paper, we illustrate the relationship between these two distributions when we consider the large deviation rate function (provided by Cramér’s theorem) for empirical means of i.i.d. random variables. We also consider the case with a random initial population. In the final part, we present large deviation results for sequences of estimators of the offspring mean based on i.i.d. replications of total progeny.

References

[1] 
Asmussen, S., Hering, H.: Branching Processes. Birkhäuser, Boston (1983). MR0701538. doi:10.1007/978-1-4615-8155-0
[2] 
Athreya, K.B.: Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4, 779–790 (1994). MR1284985. doi:10.1214/aoap/1177004971
[3] 
Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York, Heidelberg (1972). MR0373040
[4] 
Athreya, K.B., Vidyashankar, A.N.: Large deviation rates for branching processes. II. The multitype case. Ann. Appl. Probab. 5, 566–576 (1995). MR1336883. doi:10.1214/aoap/1177004778
[5] 
Biggins, J.D., Bingham, N.H.: Large deviations in the supercritical branching process. Adv. Appl. Probab. 25, 757–772 (1993). MR1241927. doi:10.2307/1427790
[6] 
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998). MR1619036. doi:10.1007/978-1-4612-5320-4
[7] 
Dwass, M.: The total progeny in a branching process and a related random walk. J. Appl. Probab. 6, 682–686 (1969). MR0253433. doi:10.1017/S0021900200026711
[8] 
Fleischmann, K., Wachtel, V.: Lower deviation probabilities for supercritical Galton–Watson processes. Ann. Inst. Henri Poincaré Probab. Stat. 43, 233–255 (2007). MR2303121. doi:10.1016/j.anihpb.2006.03.001
[9] 
González, M., Molina, M.: On the partial and total progeny of a bisexual Galton–Watson branching process. Appl. Stoch. Models Data Anal. 13, 225–232 (1998). MR1628630. doi:10.1002/(SICI)1099-0747(199709/12)13:3/4<225::AID-ASM316>3.0.CO;2-9
[10] 
Guttorp, P.: Statistical Inference for Branching Processes. John Wiley and Sons, New York (1991). MR1254434
[11] 
Hamza, K., Klebaner, F.C.: How did we get here? J. Appl. Probab. A 51, 63–72 (2014). MR3317350. doi:10.1239/jap/1417528467
[12] 
Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963). MR0163361
[13] 
Jagers, P.: Branching Processes with Biological Applications. John Wiley and Sons, London, New York, Sydney (1975). MR0488341
[14] 
Kennedy, D.P.: The Galton–Watson process conditioned on the total progeny. J. Appl. Probab. 12, 800–806 (1975). MR0386042. doi:10.1017/S0021900200048750
[15] 
Kimmel, M., Axelrod, D.E.: Branching Processes in Biology, 2nd edn. Springer, New York (2015). MR3310028. doi:10.1007/978-1-4939-1559-0
[16] 
Klebaner, F.C., Liptser, R.: Likely path to extinction in simple branching models with large initial population. J. Appl. Math. Stoch. Anal. 23, 60376 (2006). MR2221000. doi:10.1155/JAMSA/2006/60376
[17] 
Klebaner, F.C., Liptser, R.: Large deviations analysis of extinction in branching models. Math. Popul. Stud. 15, 55–69 (2008). MR2380468. doi:10.1080/08898480701792477
[18] 
Mode, C.J.: Multitype Branching Processes. Theory and Applications. Modern Analytic and Computational Methods in Science and Mathematics, vol. 34. American Elsevier Publishing Co., Inc., New York (1971). MR0279901
[19] 
Ney, P.E., Vidyashankar, A.N.: Harmonic moments and large deviation rates for supercritical branching processes. Ann. Appl. Probab. 13, 475–489 (2003). MR1970272. doi:10.1214/aoap/1050689589
[20] 
Ney, P.E., Vidyashankar, A.N.: Local limit theory and large deviations for supercritical branching processes. Ann. Appl. Probab. 14, 1135–1166 (2004). MR2071418. doi:10.1214/105051604000000242
[21] 
Ney, P.E., Vidyashankar, A.N.: Corrections and acknowledgment for: “Local limit theory and large deviations for supercritical branching processes”. Ann. Appl. Probab. 16, 2272–2272 (2006). MR2288722. doi:10.1214/105051606000000574
[22] 
Pakes, A.G.: Some limit theorems for the total progeny of a branching process. Adv. Appl. Probab. 3, 176–192 (1971). MR0283892. doi:10.1017/S0001867800037629
[23] 
Varadhan, S.R.S.: Large deviations and entropy. In: Greven, A., Keller, G., Warnecke, G. (eds.): Entropy, pp. 199–214. Princeton University Press, Princeton (2003). MR2035822

Full article PDF XML
Full article PDF XML

Copyright
© 2017 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Cramér’s theorem initial random population estimators of offspring mean

MSC2010
60F10 60J80 62F10 62F12

Metrics
since March 2018
585

Article info
views

437

Full article
views

371

PDF
downloads

181

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy