-solutions of generalized BSDEs with jumps and monotone generator in a general filtration
Volume 4, Issue 1 (2017), pp. 25–63
Pub. online: 7 February 2017
Type: Research Article
Open Access
Received
28 April 2016
28 April 2016
Revised
18 January 2017
18 January 2017
Accepted
19 January 2017
19 January 2017
Published
7 February 2017
7 February 2017
Abstract
In this paper, we study multidimensional generalized BSDEs that have a monotone generator in a general filtration supporting a Brownian motion and an independent Poisson random measure. First, we prove the existence and uniqueness of ${\mathbb{L}}^{p}(p\ge 2)$-solutions in the case of a fixed terminal time under suitable p-integrability conditions on the data. Then, we extend these results to the case of a random terminal time. Furthermore, we provide a comparison result in dimension 1.
References
Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral–partial differential equations. Stoch. Stoch. Rep. 60, 57–83 (1997). MR1436432
Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.-L.: An ${\mathbb{L}}^{1}$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. J. Appl. Math. Stoch. Anal. 22, 241–273 (1995). MR1354907
Briand, P., Carmona, R.: BSDEs with polynomial growth generators. J. Appl. Math. Stoch. Anal. 13, 207–238 (2000). MR1782682. doi:10.1155/S1048953300000216
Briand, P., Delyon, B., Hu, Y., Pardoux, E., Stoica, L.: ${\lambda }^{p}$ solutions of backward stochastic differential equations. Stoch. Process. Appl. 108, 109–129 (2003). MR2008603. doi:10.1016/S0304-4149(03)00089-9
Delong, L.: Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. European Actuarial Academy (EAA) Series. Springer, London (2013). MR3089193. doi:10.1007/978-1-4471-5331-3
Dzhaparidze, K., Valkeila, E.: On the Hellinger type distances for filtered experiments. Probab. Theory Relat. Fields 85, 105–117 (1990). MR1044303. doi:10.1007/BF01377632
Jacod, J., Shiryaev, N.: Limit Theorems for Stochastic Processes. Grundlehren Math. Wiss. [Fundam. Princ. Math. Sci.], vol. 228. Springer, Berlin (2003). MR1943877. doi:10.1007/978-3-662-05265-5
Klimsiak, T., Rozkosz, A.: Dirichlet forms and semilinear elliptic equations with measure data. J. Funct. Anal. 265, 890–925 (2013). MR3067790. doi:10.1016/j.jfa.2013.05.028
Kruse, T., Popier, A.: BSDEs with jumps in a general filtration. Stoch. Int. J. Probab. Stoch. Process. 88, 491–539 (2016). MR3473849. doi:10.1080/17442508.2015.1090990
Li, J., Wei, Q.: ${\mathbb{L}}^{p}$-estimates for fully coupled FBSDEs with jumps. Stoch. Process. Appl. 124, 1582–1611 (2014). MR3163214. doi:10.1016/j.spa.2013.12.005
Pardoux, E.: Bsdes, weak convergence and homogenization of semilinear PDE. In: Nonlinear Analysis, Differential Equations and Control. NATO Sci. Ser. C Math. Phys. Sci., vol. 528 (1999). MR1695013
Situ, R.: Theory of Stochastic Differential Equations with Jumps and Applications. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2005). MR2160585
Tang, S.-J., Li, X.-L.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32, 1447–1475 (1994). MR1288257. doi:10.1137/S0363012992233858
Yao, S.: ${\mathbb{L}}^{p}$-solutions of backward stochastic differential equations with jumps. arXiv:1007.2226 (July 2010)