Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 1 (2017)
  4. Lp(p≥2)-solutions of generalized BSDEs w ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Lp(p≥2)-solutions of generalized BSDEs with jumps and monotone generator in a general filtration
Volume 4, Issue 1 (2017), pp. 25–63
M’hamed Eddahbi   Imade Fakhouri   Youssef Ouknine  

Authors

 
Placeholder
https://doi.org/10.15559/17-VMSTA73
Pub. online: 7 February 2017      Type: Research Article      Open accessOpen Access

Received
28 April 2016
Revised
18 January 2017
Accepted
19 January 2017
Published
7 February 2017

Abstract

In this paper, we study multidimensional generalized BSDEs that have a monotone generator in a general filtration supporting a Brownian motion and an independent Poisson random measure. First, we prove the existence and uniqueness of ${\mathbb{L}}^{p}(p\ge 2)$-solutions in the case of a fixed terminal time under suitable p-integrability conditions on the data. Then, we extend these results to the case of a random terminal time. Furthermore, we provide a comparison result in dimension 1.

References

[1] 
Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral–partial differential equations. Stoch. Stoch. Rep. 60, 57–83 (1997). MR1436432
[2] 
Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.-L.: An ${\mathbb{L}}^{1}$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. J. Appl. Math. Stoch. Anal. 22, 241–273 (1995). MR1354907
[3] 
Briand, P., Carmona, R.: BSDEs with polynomial growth generators. J. Appl. Math. Stoch. Anal. 13, 207–238 (2000). MR1782682. doi:10.1155/S1048953300000216
[4] 
Briand, P., Delyon, B., Hu, Y., Pardoux, E., Stoica, L.: ${\lambda }^{p}$ solutions of backward stochastic differential equations. Stoch. Process. Appl. 108, 109–129 (2003). MR2008603. doi:10.1016/S0304-4149(03)00089-9
[5] 
Delong, L.: Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. European Actuarial Academy (EAA) Series. Springer, London (2013). MR3089193. doi:10.1007/978-1-4471-5331-3
[6] 
Dzhaparidze, K., Valkeila, E.: On the Hellinger type distances for filtered experiments. Probab. Theory Relat. Fields 85, 105–117 (1990). MR1044303. doi:10.1007/BF01377632
[7] 
Jacod, J., Shiryaev, N.: Limit Theorems for Stochastic Processes. Grundlehren Math. Wiss. [Fundam. Princ. Math. Sci.], vol. 228. Springer, Berlin (2003). MR1943877. doi:10.1007/978-3-662-05265-5
[8] 
Klimsiak, T., Rozkosz, A.: Dirichlet forms and semilinear elliptic equations with measure data. J. Funct. Anal. 265, 890–925 (2013). MR3067790. doi:10.1016/j.jfa.2013.05.028
[9] 
Kruse, T., Popier, A.: BSDEs with jumps in a general filtration. Stoch. Int. J. Probab. Stoch. Process. 88, 491–539 (2016). MR3473849. doi:10.1080/17442508.2015.1090990
[10] 
Kruse, T., Popier, A.: Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting. Stoch. Process. Appl. 126, 2554–2592 (2016)
[11] 
Lenglart, E., Lépingle, D., Pratelli, M.: Présentation unifiée de certaines inégalités de la théorie des martingales. In: Seminar on Probability XIV. Lect. Notes Math., vol. 784 (1980)
[12] 
Li, J., Wei, Q.: ${\mathbb{L}}^{p}$-estimates for fully coupled FBSDEs with jumps. Stoch. Process. Appl. 124, 1582–1611 (2014). MR3163214. doi:10.1016/j.spa.2013.12.005
[13] 
Pardoux, E.: Generalized discontinuous backward stochastic differential equations. In: Backward Stochastic Differential Equations. Pitman Res. Notes Math. Ser., vol. 364 (1997)
[14] 
Pardoux, E.: Bsdes, weak convergence and homogenization of semilinear PDE. In: Nonlinear Analysis, Differential Equations and Control. NATO Sci. Ser. C Math. Phys. Sci., vol. 528 (1999). MR1695013
[15] 
Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (1990)
[16] 
Quenez, M.-C., Sulem, A.: BSDEs with jumps, optimization and applications to dynamic risk measures. Stoch. Process. Appl. 123, 3328–3357 (2013)
[17] 
Royer, M.: Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Process. Appl. 116, 1658–1376 (2006)
[18] 
Situ, R.: Theory of Stochastic Differential Equations with Jumps and Applications. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2005). MR2160585
[19] 
Tang, S.-J., Li, X.-L.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32, 1447–1475 (1994). MR1288257. doi:10.1137/S0363012992233858
[20] 
Yao, S.: ${\mathbb{L}}^{p}$-solutions of backward stochastic differential equations with jumps. arXiv:1007.2226 (July 2010)

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2017 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Generalized backward stochastic differential equations (GBSDEs) with jumps Lp solution monotone generator comparison theorem

MSC2010
60H10 60H20 60F25

Metrics
since March 2018
729

Article info
views

527

Full article
views

411

PDF
downloads

207

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy