Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 1 (2017)
  4. Randomly stopped maximum and maximum of ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Randomly stopped maximum and maximum of sums with consistently varying distributions
Volume 4, Issue 1 (2017), pp. 65–78
Ieva Marija Andrulytė   Martynas Manstavičius   Jonas Šiaulys  

Authors

 
Placeholder
https://doi.org/10.15559/17-VMSTA74
Pub. online: 6 March 2017      Type: Research Article      Open accessOpen Access

Received
10 December 2016
Revised
23 January 2017
Accepted
27 January 2017
Published
6 March 2017

Abstract

Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables, and η be a counting random variable independent of this sequence. In addition, let $S_{0}:=0$ and $S_{n}:=\xi _{1}+\xi _{2}+\cdots +\xi _{n}$ for $n\geqslant 1$. We consider conditions for random variables $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution functions of the random maximum $\xi _{(\eta )}:=\max \{0,\xi _{1},\xi _{2},\dots ,\xi _{\eta }\}$ and of the random maximum of sums $S_{(\eta )}:=\max \{S_{0},S_{1},S_{2},\dots ,S_{\eta }\}$ belong to the class of consistently varying distributions. In our consideration the random variables $\{\xi _{1},\xi _{2},\dots \}$ are not necessarily identically distributed.

References

[1] 
Albin, J.M.P.: A note on the closure of convolution power mixtures (random sums) of exponential distributions. J. Aust. Math. Soc. 84, 1–7 (2008). MR2469263. doi:10.1017/S1446788708000104
[2] 
Cai, J., Tang, Q.: On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 41, 117–130 (2004). MR2036276. doi:10.1017/S002190020001408X
[3] 
Chen, Y., Ng, K.W., Yuen, K.C.: The maximum of randomly weighted sums with long tails in insurance and finance. Stoch. Anal. Appl. 29, 1033–1044 (2011). MR2847334. doi:10.1080/07362994.2011.610163
[4] 
Chen, Y., Yuen, K.C.: Sums of pairwise quasi-asymptotically independent random variables with consistent variation. Stoch. Models 25, 76–89 (2009). MR2494614. doi:10.1080/15326340802641006
[5] 
Chistyakov, V.P.: A theorem on sums of independent positive random variables and its application to branching processes. Theory Probab. Appl. 9, 640–648 (1964). doi:10.1137/1109088
[6] 
Cline, D.B.H.: Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. A 43, 347–365 (1987). MR0904394. doi:10.1017/S1446788700029633
[7] 
Danilenko, S., Šiaulys, J.: Randomly stopped sums of not identically distributed heavy tailed random variables. Stat. Probab. Lett. 113, 84–93 (2016). MR3480399. doi:10.1016/j.spl.2016.03.001
[8] 
Danilenko, S., Paškauskaitė, S., Šiaulys, J.: Random convolution of inhomogeneous distributions with $\mathcal{O}$ exponential tail. Mod. Stoch., Theory Appl. 3, 79–94 (2016). doi:10.15559/16-VMSTA52
[9] 
Denisov, D., Foss, S., Korshunov, D.: Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 16, 971–994 (2010). MR2759165. doi:10.3150/10-BEJ251
[10] 
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997).
[11] 
Embrechts, P., Goldie, C.M.: On convolution tails. Stoch. Process. Appl. 13, 263–278 (1982). MR0671036. doi:10.1016/0304-4149(82)90013-8
[12] 
Embrechts, P., Omey, E.: A property of longtailed distributions. J. Appl. Probab. 21, 80–87 (1984). MR0732673. doi:10.1017/S0021900200024396
[13] 
Kaas, R., Tang, Q.: Note on the tail behavior of random walk maxima with heavy tails and negative drift. N. Am. Actuar. J. 7, 57–61 (2003). doi:10.1080/10920277.2003.10596103
[14] 
Kizinevič, E., Sprindys, J., Šiaulys, J.: Randomly stopped sums with consistently varying distributions. Mod. Stoch., Theory Appl. 3, 165–179 (2016). doi:10.15559/16-VMSTA60
[15] 
Klüppelberg, C.: Subexponential distributions and integrated tails. J. Appl. Probab. 25, 132–141 (1988). doi:10.1017/S0021900200040705
[16] 
Leipus, R., Šiaulys, J.: Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 52, 249–258 (2012). doi:10.1007/s10986-012-9171-7
[17] 
Ng, K.W., Tang, Q., Yang, H.: Maxima of sums of heavy-tailed random variables. ASTIN Bull. 32, 43–55 (2002). MR1928012. doi:10.2143/AST.32.1.1013
[18] 
Wang, D., Tang, Q.: Maxima of sums and random sums for negatively associated random variables with heavy tails. Stat. Probab. Lett. 68, 287–295 (2004). MR2083897. doi:10.1016/j.spl.2004.03.011
[19] 
Watanabe, T., Yamamuro, K.: Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 15, 44–75 (2010). doi:10.1214/EJP.v15-732
[20] 
Xu, H., Foss, S., Wang, Y.: On closedness under convolution and convolution roots of the class of long-tailed distributions. Extremes 18, 605–628 (2015). MR3418770. doi:10.1007/s10687-015-0224-2
[21] 
Zhang, J., Cheng, F., Wang, Y.: Tail behavior of random sums of negatively associated increments. J. Math. Anal. Appl. 376, 64–73 (2011). doi:10.1016/j.jmaa.2010.10.001

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2017 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Heavy tail consistently varying tail randomly stopped maximum randomly stopped maximum of sums closure property

MSC2010
62E20 60E05 60F10 44A35

Metrics
since March 2018
1063

Article info
views

622

Full article
views

322

PDF
downloads

166

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy