Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 2 (2017)
  4. A functional limit theorem for random pr ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

A functional limit theorem for random processes with immigration in the case of heavy tails
Volume 4, Issue 2 (2017), pp. 93–108
Alexander Marynych   Glib Verovkin  

Authors

 
Placeholder
https://doi.org/10.15559/17-VMSTA76
Pub. online: 12 April 2017      Type: Research Article      Open accessOpen Access

Received
31 January 2017
Revised
26 March 2017
Accepted
27 March 2017
Published
12 April 2017

Abstract

Let $(X_{k},\xi _{k})_{k\in \mathbb{N}}$ be a sequence of independent copies of a pair $(X,\xi )$ where X is a random process with paths in the Skorokhod space $D[0,\infty )$ and ξ is a positive random variable. The random process with immigration $(Y(u))_{u\in \mathbb{R}}$ is defined as the a.s. finite sum $Y(u)=\sum _{k\ge 0}X_{k+1}(u-\xi _{1}-\cdots -\xi _{k})\mathbb{1}_{\{\xi _{1}+\cdots +\xi _{k}\le u\}}$. We obtain a functional limit theorem for the process $(Y(ut))_{u\ge 0}$, as $t\to \infty $, when the law of ξ belongs to the domain of attraction of an α-stable law with $\alpha \in (0,1)$, and the process X oscillates moderately around its mean $\mathbb{E}[X(t)]$. In this situation the process $(Y(ut))_{u\ge 0}$, when scaled appropriately, converges weakly in the Skorokhod space $D(0,\infty )$ to a fractionally integrated inverse stable subordinator.

References

[1] 
Alsmeyer, G., Iksanov, A., Marynych, A.: Functional limit theorems for the number of occupied boxes in the Bernoulli sieve. Stoch. Process. Appl. 127(3), 995–1017 (2017). MR3605718. doi:10.1016/j.spa.2016.07.007
[2] 
Alsmeyer, G., Iksanov, A., Meiners, M.: Power and exponential moments of the number of visits and related quantities for perturbed random walks. J. Theor. Probab. 28(1), 1–40 (2015). MR3320959. doi:10.1007/s10959-012-0475-7
[3] 
Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encycl. Math. Appl., vol. 27. Cambridge University Press, Cambridge (1987), 491 p. MR0898871. doi:10.1017/CBO9780511721434
[4] 
Chow, Y.S., Teicher, H.: Probability Theory. Independence, Interchangeability, Martingales, 3rd edn. Springer Texts Statist., Springer (1997), 488 p.
[5] 
Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II. 2nd edn., John Wiley & Sons, Inc., New York, London, Sydney (1971), 669 p. MR0270403
[6] 
Iksanov, A.: Functional limit theorems for renewal shot noise processes with increasing response functions. Stoch. Process. Appl. 123(6), 1987–2010 (2013). MR3038496. doi:10.1016/j.spa.2013.01.019
[7] 
Iksanov, A.: Renewal Theory for Perturbed Random Walks and Similar Processes. Probab. Appl., Birkhäuser (2016), 250 p.
[8] 
Iksanov, A., Jedidi, W., Bouzeffour, F.: Functional limit theorems for the number of busy servers in a G/G/∞ queue. Preprint available at https://arxiv.org/pdf/1610.08662.pdf
[9] 
Iksanov, A., Kabluchko, Z., Marynych, A.: Weak convergence of renewal shot noise processes in the case of slowly varying normalization. Stat. Probab. Lett. 114, 67–77 (2016). MR3491974. doi:10.1016/j.spl.2016.03.015
[10] 
Iksanov, A., Marynych, A., Meiners, M.: Limit theorems for renewal shot noise processes with eventually decreasing response functions. Stoch. Process. Appl. 124(6), 2132–2170 (2014). MR3188351. doi:10.1016/j.spa.2014.02.007
[11] 
Iksanov, A., Marynych, A., Meiners, M.: Asymptotics of random processes with immigration I: Scaling limits. Bernoulli 23(2), 1233–1278 (2017). MR3606765. doi:10.3150/15-BEJ776
[12] 
Iksanov, A., Marynych, A., Meiners, M.: Asymptotics of random processes with immigration II: Convergence to stationarity. Bernoulli 23(2), 1279–1298 (2017)
[13] 
Iksanov, A.M., Marynych, A.V., Vatutin, V.A.: Weak convergence of finite-dimensional distributions of the number of empty boxes in the Bernoulli sieve. Theory Probab. Appl. 59(1), 87–113 (2015). MR3416065. doi:10.1137/S0040585X97986904
[14] 
Iksanov, A., Kabluchko, Z., Marynych, A., Shevchenko, G.: Fractionally integrated inverse stable subordinators. Stoch. Process. Appl. 127(1), 80–106 (2016)
[15] 
Klüppelberg, C., Kühn, C.: Fractional Brownian motion as a weak limit of Poisson shot noise processes—with applications to finance. Stoch. Process. Appl. 113(2), 333–351 (2004)
[16] 
Marynych, A.: A note on convergence to stationarity of random processes with immigration. Theory Stoch. Process. 20(36)(1), 84–100 (2016). MR3502397
[17] 
Mikosch, T., Resnick, S.: Activity rates with very heavy tails. Stoch. Process. Appl. 116(2), 131–155 (2006)
[18] 
Resnick, S., Rootzén, H.: Self-similar communication models and very heavy tails. Ann. Appl. Probab. 10(3), 753–778 (2000)

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2017 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractionally integrated inverse stable subordinators random process with immigration shot noise process

MSC2010
60F05 (primary) 60K05 (secondary)

Metrics
since March 2018
566

Article info
views

416

Full article
views

352

PDF
downloads

156

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy