Let $(X_{k},\xi _{k})_{k\in \mathbb{N}}$ be a sequence of independent copies of a pair $(X,\xi )$ where X is a random process with paths in the Skorokhod space $D[0,\infty )$ and ξ is a positive random variable. The random process with immigration $(Y(u))_{u\in \mathbb{R}}$ is defined as the a.s. finite sum $Y(u)=\sum _{k\ge 0}X_{k+1}(u-\xi _{1}-\cdots -\xi _{k})\mathbb{1}_{\{\xi _{1}+\cdots +\xi _{k}\le u\}}$. We obtain a functional limit theorem for the process $(Y(ut))_{u\ge 0}$, as $t\to \infty $, when the law of ξ belongs to the domain of attraction of an α-stable law with $\alpha \in (0,1)$, and the process X oscillates moderately around its mean $\mathbb{E}[X(t)]$. In this situation the process $(Y(ut))_{u\ge 0}$, when scaled appropriately, converges weakly in the Skorokhod space $D(0,\infty )$ to a fractionally integrated inverse stable subordinator.
In this paper we develop a general framework for quantifying how binary risk factors jointly influence a binary outcome. Our key result is an additive expansion of odds ratios as a sum of marginal effects and interaction terms of varying order. These odds ratio expansions are used for estimating the excess odds ratio, attributable proportion and synergy index for a case-control dataset by means of maximum likelihood from a logistic regression model. The confidence intervals associated with these estimates of joint effects and interaction of risk factors rely on the delta method. Our methodology is illustrated with a large Nordic meta dataset for multiple sclerosis. It combines four studies, with a total of 6265 cases and 8401 controls. It has three risk factors (smoking and two genetic factors) and a number of other confounding variables.
In this paper we propose a multi-state model for the evaluation of the conversion option contract. The multi-state model is based on age-indexed semi-Markov chains that are able to reproduce many important aspects that influence the valuation of the option such as the duration problem, the time non-homogeneity and the ageing effect. The value of the conversion option is evaluated after the formal description of this contract.
The paper deals with bonus–malus systems with different claim types and varying deductibles. The premium relativities are softened for the policyholders who are in the malus zone and these policyholders are subject to per claim deductibles depending on their levels in the bonus–malus scale and the types of the reported claims. We introduce such bonus–malus systems and study their basic properties. In particular, we investigate when it is possible to introduce varying deductibles, what restrictions we have and how we can do this. Moreover, we deal with the special case where varying deductibles are applied to the claims reported by policyholders occupying the highest level in the bonus–malus scale and consider two allocation principles for the deductibles. Finally, numerical illustrations are presented.
In the paper we study the models of time-changed Poisson and Skellam-type processes, where the role of time is played by compound Poisson-Gamma subordinators and their inverse (or first passage time) processes. We obtain explicitly the probability distributions of considered time-changed processes and discuss their properties.