Multi-state models for evaluating conversion options in life insurance✩
Volume 4, Issue 2 (2017), pp. 127–139
Pub. online: 10 May 2017
Type: Research Article
Open Access
✩
This work is dedicated to Prof. Dmitrii Silvestrov in recognition of his contribution to actuarial mathematics.
Received
29 March 2017
29 March 2017
Revised
20 April 2017
20 April 2017
Accepted
21 April 2017
21 April 2017
Published
10 May 2017
10 May 2017
Abstract
In this paper we propose a multi-state model for the evaluation of the conversion option contract. The multi-state model is based on age-indexed semi-Markov chains that are able to reproduce many important aspects that influence the valuation of the option such as the duration problem, the time non-homogeneity and the ageing effect. The value of the conversion option is evaluated after the formal description of this contract.
References
D’Amico, G.: Age-usage semi-Markov models. Appl. Math. Model. 35, 4354–4366 (2011). MR2801959. doi:10.1016/j.apm.2011.03.006
D’Amico, G., Guillen, M., Manca, R.: Full backward non-homogeneous semi-Markov processes for disability insurance models: A Catalunya real data application. Insur. Math. Econ. 45, 173–179 (2009). MR2583371. doi:10.1016/j.insmatheco.2009.05.010
D’Amico, G., Guillen, M., Manca, R.: Semi-Markov disability insurance models. Commun. Stat., Theory Methods 42(16), 2172–2188 (2013). MR3170905. doi:10.1080/03610926.2012.746982
D’Amico, G., Di Biase, G., Janssen, J., Manca, R.: HIV evolution: A quantification of the effects due to age and to medical progress. Informatica 22(1), 27–42 (2011). MR2885657
Haberman, S., Pitacco, E.: Actuarial Models for Disability Insurance. Chapman & Hall, London (1999). MR1653961
Kwon, H.S., Jones, B.: The impact of the determinants of mortality on life insurance and annuities. Insur. Math. Econ. 38, 271–288 (2006). MR2212527. doi:10.1016/j.insmatheco.2005.08.007
Kwon, H.S., Jones, B.: Applications of a multi-state risk factor/mortality model in life insurance. Insur. Math. Econ. 43, 394–402 (2008). MR2479585. doi:10.1016/j.insmatheco.2008.07.004
Lin, X.S., Liu, X.: Markov aging process and phase-type law of mortality. N. Am. Actuar. J. 11, 92–109 (2007). MR2413621. doi:10.1080/10920277.2007.10597486
Liu, X., Lin, X.S.: A subordinated Markov model for stochastic mortality. Eur. Actuar. J. 2, 105–127 (2012). MR2954471. doi:10.1007/s13385-012-0047-3
Maegebier, A.: Valuation and risk assessment of disability insurance using a discrete time trivariate Markov renewal reward process. Insur. Math. Econ. 53, 802–811 (2013). MR3130475. doi:10.1016/j.insmatheco.2013.09.013
Nordahl, H.A.: Valuation of life insurance surrender and exchange options. Insur. Math. Econ. 42, 909–919 (2008). MR2435361. doi:10.1016/j.insmatheco.2007.10.011
Stenberg, F., Manca, R., Silvestrov, D.: An algorithmic approach to discrete time non-homogeneous backward semi-Markov reward processes with an application to disability insurance. Methodol. Comput. Appl. Probab. 9, 497–519 (2007). MR2404740. doi:10.1007/s11009-006-9012-4
Su, K.C.: The conversion option in life insurance. Insur. Math. Econ. 46, 437–442 (2010). MR2642520. doi:10.1016/j.insmatheco.2009.12.009