Quantifying and estimating additive measures of interaction from case-control data
Volume 4, Issue 2 (2017), pp. 109–125
Pub. online: 26 April 2017
Type: Research Article
Open Access
Received
22 March 2017
22 March 2017
Revised
12 April 2017
12 April 2017
Accepted
12 April 2017
12 April 2017
Published
26 April 2017
26 April 2017
Abstract
In this paper we develop a general framework for quantifying how binary risk factors jointly influence a binary outcome. Our key result is an additive expansion of odds ratios as a sum of marginal effects and interaction terms of varying order. These odds ratio expansions are used for estimating the excess odds ratio, attributable proportion and synergy index for a case-control dataset by means of maximum likelihood from a logistic regression model. The confidence intervals associated with these estimates of joint effects and interaction of risk factors rely on the delta method. Our methodology is illustrated with a large Nordic meta dataset for multiple sclerosis. It combines four studies, with a total of 6265 cases and 8401 controls. It has three risk factors (smoking and two genetic factors) and a number of other confounding variables.
References
Agresti, A.: A survey of exact inference for contingency tables. Stat. Sci. 7(1), 131–153 (1992). MR1173420. doi:10.1214/ss/1177011454
Agresti, A.: Categorical Data Analysis, 3rd edn. Wiley, Hoboken, New Jersey (2013). MR3087436
Andersson, T., Alfredsson, L., Källberg, H., Zdravkovic, S., Ahlbom, A.: Calculating measures of biological interaction. Eur. J. Epidemiol. 20, 575–579 (2005). doi:10.1007/s10654-005-7835-x
Assman, S.F., Hosmer, D.W., Lemeshow, S., Mundt, K.A.: Confidence intervals for measures of interaction. Epidemiology 7(3), 286–290 (1996). doi:10.1097/00001648-199605000-00012
Cree, B.: Multiple sclerosis genetics. In: Handb. Clin. Neurol., vol. 122, pp. 193–209 (2014). doi:10.1016/B978-0-444-52001-2.00009-1
Efron, B.: Better bootstrap confidence intervals (with discussion). J. Am. Stat. Assoc. 82, 171–200 (1987). doi:10.1080/01621459.1987.10478410
Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monogr. Stat. Appl. Probab., vol. 57. Chapman and Hall/CRC (1994). MR1270903. doi:10.1007/978-1-4899-4541-9
Eide, G.E.: Attributable fractions: fundamental concepts and their visualization. Stat. Methods Med. Res. 10, 159–193 (2001). doi:10.1177/096228020101000302
Greenland, S.: Additive risk versus additive relative risk models. Epidemiology 4(1), 32–36 (1993). doi:10.1097/00001648-199301000-00007
Hedström, A.K., Sundqvist, E., Bäärnhielm, M., Nordin, N., Hiller, J., Kockum, I., Olsson, T., Alfredsson, L.,: Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain 134, 653–664 (2011). doi:10.1093/brain/awq371
Hosmer, D.W., Lemeshow, S.: Confidence interval estimation of interaction. Epidemiology 3(5), 452–456 (1992). doi:10.1097/00001648-199209000-00012
Hössjer, O., Kockum, I., Alfredsson, L., Hedström, A-K., Olsson, T., Lekman, M.: A new normalization and generalized definition of attributable proportion. Epidemiol. Methods (2017) (available online December 2016). doi:10.1515/em-2015-0028
Knol, M.J., VanderWeele, T.J., Groenwold, R.H., Klungel, O.H., Rovers, M.M., Grobbee, D.E.: Estimating measures of interaction on an additive scale for preventive exposures. Eur. J. Epidemiol. 26, 433–438 (2011). doi:10.1007/s10654-011-9554-9
Olsson, T., Barcellos, L.F., Alfredsson, L.: Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13(1), 25–36 (2017). doi:10.1038/nrneurol.2016.187
Prentice, R.L., Pyke, R.: Logistic disease incidence models and case-control studies. Biometrika 66(3), 403–411 (1979). doi:10.1093/biomet/66.3.403
Rothman, K.J.: The estimation of synergy or antagonism. Am. J. Epidemiol. 103, 506–511 (1976). doi:10.1093/oxfordjournals.aje.a112252
Rothman, K.J., Greenland, S., Walker, A.M.: Concepts of interaction. Am. J. Epidemiol. 112, 467–470 (1980). doi:10.1093/oxfordjournals.aje.a113015
Skrondal, A.: Interaction as departure from additivity in case-control studies: a cautionary note. Am. J. Epidemiol. 158, 251–258 (2003). doi:10.1093/aje/kwg113
VanderWeele, T.J.: Reconsidering the denominator of the attributable proportion for interaction. Eur. J. Epidemiol. 28, 779–784 (2013). doi:10.1007/s10654-013-9843-6
VanderWeele, T.J., Robins, J.M.: Empirical and counterfactual conditions for sufficient cause interactions. Biometrika 95, 49–61 (2008). doi:10.1093/biomet/asm090