Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 2 (2017)
  4. Bonus–malus systems with different claim ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Bonus–malus systems with different claim types and varying deductibles
Volume 4, Issue 2 (2017), pp. 141–159
Olena Ragulina  

Authors

 
Placeholder
https://doi.org/10.15559/17-VMSTA80
Pub. online: 28 June 2017      Type: Research Article      Open accessOpen Access

Received
10 April 2017
Revised
11 June 2017
Accepted
13 June 2017
Published
28 June 2017

Abstract

The paper deals with bonus–malus systems with different claim types and varying deductibles. The premium relativities are softened for the policyholders who are in the malus zone and these policyholders are subject to per claim deductibles depending on their levels in the bonus–malus scale and the types of the reported claims. We introduce such bonus–malus systems and study their basic properties. In particular, we investigate when it is possible to introduce varying deductibles, what restrictions we have and how we can do this. Moreover, we deal with the special case where varying deductibles are applied to the claims reported by policyholders occupying the highest level in the bonus–malus scale and consider two allocation principles for the deductibles. Finally, numerical illustrations are presented.

References

[1] 
Bonsdorff, H.: On asymptotic properties of bonus–malus systems based on the number and on the size of the claims. Scand. Actuar. J. 2005, 309–320 (2005). MR2164049. doi:10.1080/03461230510009826
[2] 
Denuit, M., Dhaene, J.: Bonus–malus scales using exponential loss functions. Blätter DGVFM 25, 13–27 (2001)
[3] 
Denuit, M., Maréchal, X., Pitrebois, S., Walhin, J.-F.: Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus–Malus Systems. John Wiley & Sons, Chichester (2007). MR2384837. doi:10.1002/9780470517420
[4] 
Dionne, G., Vanasse, C.: A generalization of actuarial automobile insurance rating models: the negative binomial distribution with a regression component. ASTIN Bull. 19, 199–212 (1989)
[5] 
Dionne, G., Vanasse, C.: Automobile insurance ratemaking in the presence of asymmetrical information. J. Appl. Econom. 7, 149–165 (1992)
[6] 
Frangos, N.E., Vrontos, S.D.: Design of optimal bonus–malus systems with a frequency and a severity component on an individual basis in automobile insurance. ASTIN Bull. 31, 1–22 (2001). MR1945629. doi:10.2143/AST.31.1.991
[7] 
Gómez-Déniz, E.: Bivariate credibility bonus–malus premiums distinguishing between two types of claims. Insur. Math. Econ. 70, 117–124 (2016). MR3543037. doi:10.1016/j.insmatheco.2016.06.009
[8] 
Gómez-Déniz, E., Hernández-Bastida, A., Fernández-Sánchez, M.P.: Computing credibility bonus–malus premiums using the total claim amount distribution. Hacet. J. Math. Stat. 43, 1047–1061 (2014). MR3331161
[9] 
Holtan, J.: Bonus made easy. ASTIN Bull. 24, 61–74 (1994)
[10] 
Lemaire, J.: Bonus–Malus Systems in Automobile Insurance. Kluwer Academic Publisher, Boston (1995)
[11] 
Lemaire, J., Zi, H.: High deductibles instead of bonus–malus. Can it work? ASTIN Bull. 24, 75–88 (1994)
[12] 
Mahmoudvand, R., Hassani, H.: Generalized bonus–malus systems with a frequency and a severity component on an individual basis in automobile insurance. ASTIN Bull. 39, 307–315 (2009). MR2749888. doi:10.2143/AST.39.1.2038066
[13] 
Mert, M., Saykan, Y.: On a bonus–malus system where the claim frequency distribution is geometric and the claim severity distribution is Pareto. Hacet. J. Math. Stat. 34, 75–81 (2005). MR2212712
[14] 
Norberg, R.: A credibility theory for automobile bonus system. Scand. Actuar. J. 1976, 92–107 (1976). MR0428666. doi:10.1080/03461238.1976.10405605
[15] 
Pinquet, J.: Allowance for cost of claims in bonus–malus systems. ASTIN Bull. 27, 33–57 (1997)
[16] 
Pinquet, J.: Designing optimal bonus–malus systems from different types of claims. ASTIN Bull. 28, 205–220 (1998)
[17] 
Pitrebois, S., Denuit, M., Walhin, J.-F.: Bonus–malus systems with varying deductibles. ASTIN Bull. 35, 261–274 (2005). MR2143217. doi:10.2143/AST.35.1.583175
[18] 
Pitrebois, S., Denuit, M., Walhin, J.-F.: Multi-event bonus–malus scales. J. Risk Insur. 73, 517–528 (2006)
[19] 
Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. John Wiley & Sons, Chichester (1999). MR1680267. doi:10.1002/9780470317044
[20] 
Tzougas, G., Vrontos, S., Frangos, N.: Optimal bonus–malus systems using finite mixture models. ASTIN Bull. 44, 417–444 (2014). MR3389581. doi:10.1017/asb.2013.31

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2017 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Bonus–malus system claim type varying deductible indifference principle allocation principle premium relativity Markov chain transition matrix stationary distribution

MSC2010
91B30 60J20 60G55

Metrics
since March 2018
847

Article info
views

1167

Full article
views

436

PDF
downloads

170

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy