A single jump filtration ${({\mathcal{F}_{t}})_{t\in {\mathbb{R}_{+}}}}$ generated by a random variable γ with values in ${\overline{\mathbb{R}}_{+}}$ on a probability space $(\Omega ,\mathcal{F},\mathsf{P})$ is defined as follows: a set $A\in \mathcal{F}$ belongs to ${\mathcal{F}_{t}}$ if $A\cap \{\gamma >t\}$ is either ∅ or $\{\gamma >t\}$. A process M is proved to be a local martingale with respect to this filtration if and only if it has a representation ${M_{t}}=F(t){\mathbb{1}_{\{t<\gamma \}}}+L{\mathbb{1}_{\{t\geqslant \gamma \}}}$, where F is a deterministic function and L is a random variable such that $\mathsf{E}|{M_{t}}|<\infty $ and $\mathsf{E}({M_{t}})=\mathsf{E}({M_{0}})$ for every $t\in \{t\in {\mathbb{R}_{+}}:\mathsf{P}(\gamma \geqslant t)>0\}$. This result seems to be new even in a special case that has been studied in the literature, namely, where $\mathcal{F}$ is the smallest σ-field with respect to which γ is measurable (and then the filtration is the smallest one with respect to which γ is a stopping time). As a consequence, a full description of all local martingales is given and they are classified according to their global behaviour.
In this paper we provide a systematic exposition of basic properties of integrated distribution and quantile functions. We define these transforms in such a way that they characterize any probability distribution on the real line and are Fenchel conjugates of each other. We show that uniform integrability, weak convergence and tightness admit a convenient characterization in terms of integrated quantile functions. As an application we demonstrate how some basic results of the theory of comparison of binary statistical experiments can be deduced using integrated quantile functions. Finally, we extend the area of application of the Chacon–Walsh construction in the Skorokhod embedding problem.