Let $({\xi _{1}},{\eta _{1}})$, $({\xi _{2}},{\eta _{2}}),\dots $ be independent identically distributed ${\mathbb{N}^{2}}$-valued random vectors with arbitrarily dependent components. The sequence ${({\Theta _{k}})_{k\in \mathbb{N}}}$ defined by ${\Theta _{k}}={\Pi _{k-1}}\cdot {\eta _{k}}$, where ${\Pi _{0}}=1$ and ${\Pi _{k}}={\xi _{1}}\cdot \dots \cdot {\xi _{k}}$ for $k\in \mathbb{N}$, is called a multiplicative perturbed random walk. Arithmetic properties of the random sets $\{{\Pi _{1}},{\Pi _{2}},\dots ,{\Pi _{k}}\}\subset \mathbb{N}$ and $\{{\Theta _{1}},{\Theta _{2}},\dots ,{\Theta _{k}}\}\subset \mathbb{N}$, $k\in \mathbb{N}$, are studied. In particular, distributional limit theorems for their prime counts and for the least common multiple are derived.